Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-9mfzn Total loading time: 0.487 Render date: 2021-04-17T15:31:26.861Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Magnetotactic Bacteria – a Natural Architecture Leading from Structure to Possible Applications

Published online by Cambridge University Press:  31 January 2011

Kui Yu Zhang
Affiliation:
kui.yu@univ-reims.fr, University of Reims, Physics, LMEN - UFR Sciences, B.P. 1039, Reims, 51687, France, +33326913447
Kai Ling Zhu
Affiliation:
zhulailing0532@hotmail.com, Institute of Oceanology, CAS, Qingdao, Shandong, China
Tian Xiao
Affiliation:
txiao@ms.qdio.ac.cn, Institute of Oceanology, CAS, Qingdao, China
Long Fei Wu
Affiliation:
wu@ifr88.cnrs-mrs.fr, Laboratoire de Chimie Bactérienne, CNRS -Marseille, Marseille, France
Get access

Abstract

Magnetotactic bacteria are aquatic micro-organisms which have the specific capacity to navigate along the lines of the earth’s magnetic field. This property is related to the formation of chains of magnetic crystals called magnetosomes. All magnetotactic bacteria synthesize nano-sized intracellular magnetosomes that are surrounded by ultra-thin bio-membranes. The magnetosome chains serve as compass for navigation of the magnetotactic bacteria, and the cell flagella are considered as the mechanism for propelling the bacteria forward. This presentation describes various functions of the architectured structure of magnetotactic bacteria as well as their possible applications in biotechnology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Thompson, D’Arcy, On Growth and Form, ed. Bonner, J. T., Cambridge Univ. Press (1992).10.1017/CBO9781107325852CrossRefGoogle Scholar
2 Blakemore, R. P., Science 190, 377 (1975).10.1126/science.170679CrossRefGoogle Scholar
3 Bellini, S., http://www.calpoly.edu/˜rfrankel/Sbellini2.pdf.Google Scholar
4 Bellini, S., Chinese J. Oceanology and Limnology 27, 3-5 & 612 (2009).10.1007/s00343-009-0006-2CrossRefGoogle Scholar
5 Frankel, R. B., Chinese J. Oceanology and Limnology 27, 12 (2009).10.1007/s00343-009-0001-7CrossRefGoogle Scholar
6 Pósfai, M., Buseck, P. R., Bazylinski, D. A., and Frankel, R. B., Science 280, 880 (1998).Google Scholar
7 Blakemore, R. P., Annu. Rev. Microbiol. 36, 217238 (1982).10.1146/annurev.mi.36.100182.001245CrossRefGoogle Scholar
8 Bazylinski, D. A. and Moskowwitz, B. M., Microbial biomineralisation of magnetic iron minerals, ed. Banfield, J. F. and Nealson, K. H. (1997), Rev. Mineral. 35, pp. 191223.Google Scholar
9 Frankel, R. B. and Moskowwitz, B. M., “Biogenic Magnets”, Magnetism: Molecules to Materials IV, ed. Miller, J. S. and Drillon, M. (Wiley-Vch, 2003), pp. 205231.10.1002/9783527620548.ch6cCrossRefGoogle Scholar
10 Bazylinski, D. A. and Frankel, R. B., Nature Reviews 2, 217230 (2004).Google Scholar
11 Faivre, D. and Schüler, D., Chem. Rev. 108, 48754898 (2008).10.1021/cr078258wCrossRefGoogle Scholar
12 Arakaki, A., Nakazawa, H., Nemoto, M., Mori, T., and Matsunaga, T., J. R. Soc. Interface 5, 977999 (2008).10.1098/rsif.2008.0170CrossRefGoogle Scholar
13 Lefèvre, C., Bernadac, A., Pradel, N., Wu, L.-F., Yu-Zhang, K., Xiao, T., Yonnet, J. P., Lebouc, A., Song, T., and Fukumori, Y., J. Ocean University of China 6(4), 355359 (2007).10.1007/s11802-007-0355-4CrossRefGoogle Scholar
14 Devouard, B., Pósfai, M., Hua, X., Bazylinski, D. A. , Frankel, R. B., and Buseck, P. R., American Mineralogist 83, 13871398 (1998).10.2138/am-1998-11-1228CrossRefGoogle Scholar
15 Lefèvre, C. T., Bernadac, A., Yu-Zhang, K., Pradel, N., and Wu, L.-F., Environmental Microbiology, in press (2009).Google Scholar
16 Pan, H.-M., Zhu, K.-L., Song, T., Yu-Zhang, K., Lefèvre, C., Xing, S., Liu, M., Zhao, S., Xiao, T., and Wu, L.-F., Environmental Microbiology 10(5), 11581164 (2008).10.1111/j.1462-2920.2007.01532.xCrossRefGoogle Scholar
17 Butler, R. F. and Banerjee, S. K., J. Geophysical Research 80, 40494058 (1975).10.1029/JB080i029p04049CrossRefGoogle Scholar
18 Zhang, C.-L., Vali, H., Romanek, C. S., Phelps, T. J., and Liu, S. V., American Mineralogist 83, 14091418 (1998).10.2138/am-1998-11-1230CrossRefGoogle Scholar
19 Frankel, R. B., Annu. Rev. Biophys. Bioengng 13, 85 (1984).10.1146/annurev.bb.13.060184.000505CrossRefGoogle Scholar
20 Frankel, R. B. and Bazylinski, D. A., Trends in Microbiology 14, 329331 (2006).10.1016/j.tim.2006.06.004CrossRefGoogle Scholar
21 Balkwill, D. and Blakemore, R. P., J. Bacteriol. 141, 13991408 (1980).Google Scholar
22 Komeili, A., Li, Z., Newman, D. K., and Jensen, G. J., Science 311, 242245 (2006).10.1126/science.1123231CrossRefGoogle Scholar
23 Scheffel, A., Gruska, M., Faivre, D., Linaroudis, A., Plitzko, J. M., and Schüler, D., Nature, 440, 110114 (2006).10.1038/nature04382CrossRefGoogle Scholar
24 Komeili, A., Annu. Rev. Biochem. 76, 351366 (2007).10.1146/annurev.biochem.74.082803.133444CrossRefGoogle Scholar
25 Sarikaya, M., Proc. Natl. Acad. Sci. USA 96, 1418314185 (1999).10.1073/pnas.96.25.14183CrossRefGoogle Scholar
26 Baeuerlein, E. J., Schüler, D., Reszka, R., and Päuser, S., In PCT/DE 98/00668 (1998).Google Scholar
27 Matsunaga, T., Suzuki, T., Tanaka, M., and Arakaki, A., Trends Biotechnol. 28, 182 (2007).10.1016/j.tibtech.2007.02.002CrossRefGoogle Scholar
28 Ma, M., Zhang, Y., Yu, W., Shen, H.-Y., Zhang, H.-Q., and Gu, N., Colloids and Surfaces A 212, 219226 (2002).10.1016/S0927-7757(02)00305-9CrossRefGoogle Scholar
29 Bahaj, A. S., Croudace, I. W., and James, P. A. B., IEEE Transactions on Magnetics 30, 47074709 (1994).10.1109/20.334196CrossRefGoogle Scholar
30 Bahaj, A. S., Croudace, I. W., James, P. A. B., Moeschler, F. D., and Warwick, P. E., J. Inorg. Biochem. 59, 107 (1998).Google Scholar
31. Chang, S.-B. R. and Kirschvink, J. L., Ann. Rev. Earth Planet. Sci. 17, 169 (1989).10.1146/annurev.ea.17.050189.001125CrossRefGoogle Scholar
32 Petersen, N., Dobeneck, T. Von, and Vali, H., Nature 320, 611 (1986).10.1038/320611a0CrossRefGoogle Scholar
33 Thomas-Keprta, K. L., Chemett, S. J., Bazylinski, D. A., Kirschrink, J. L., McKay, D. S., Vali, H., Gibson, E. K. Jr, and Romanek, C. S., Proc. Natl. Acad. Sci. USA 98, 21642169 (2001).10.1073/pnas.051500898CrossRefGoogle Scholar
34 Mann, S., Biomineralisation: Principles and Concepts in Bioinorganic Materials Chemistry, Oxford University Press (2001).Google Scholar
35 Fortin, D., Glasauer, S., and Langley, R.S., Biomineralisation: From Nature to Application, vol. 4 of Metal Ions in Life Sciences, ed. Sigel, A., Sigel, H., Sigel, R. K. O. (Jihn Wiley & Sons), in press.Google Scholar
36 Cornell, R. M. and Schertmann, U., The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, VCH, New York (1996).Google Scholar
37 Staniland, S., Ward, B., Harrison, A., Laan, G. van der, and Telling, N., Proc. Natl. Acad. Sci. 104 (49), 1952419528 (2007).10.1073/pnas.0704879104CrossRefGoogle Scholar
38 Bazylinski, D. A., Frankel, R. B., Heywood, B. R., Mann, S., King, J. W., Donaghay, P. L., and Hanson, A. K., Appl. Environ. Microbiol. 61, 3232 (1995).Google Scholar
39 Bazylinski, D. A., Heywood, B. R., Mann, S., and Frankel, R. B., Nature 366, 218 (1993).10.1038/366218a0CrossRefGoogle Scholar
40 Keim, C. N. and Farina, M., Geomicrobiol. J. 22, 55 (2005).10.1080/01490450590922550CrossRefGoogle Scholar
41 Isambert, A., Menguy, N., Larquet, E., Guyot, F., and Valet, J.-P., Am. Mineral. 92, 621 (2007).10.2138/am.2007.2278CrossRefGoogle Scholar
42 Meldrum, F. C., Mann, S., Heywood, B. R., Frankel, R. B., and Bazylinski, D. A., Proc. R. Soc. Lond. B 251, 231-236 & 237242 (1993).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 7 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 17th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Magnetotactic Bacteria – a Natural Architecture Leading from Structure to Possible Applications
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Magnetotactic Bacteria – a Natural Architecture Leading from Structure to Possible Applications
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Magnetotactic Bacteria – a Natural Architecture Leading from Structure to Possible Applications
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *