Skip to main content Accessibility help
×
Home

Magnetic Anisotropy of Strained La0.7Sr0.3MnO3 Thin Films Studied by MOKE

Published online by Cambridge University Press:  17 March 2011

M. Koubaa
Affiliation:
Institut d'Electronique Fondamentale - IEF, Univ. Paris Sud, Bat 220, 91405 Orsay Cedex, France
A.M. Haghiri-Gosnet
Affiliation:
Institut d'Electronique Fondamentale - IEF, Univ. Paris Sud, Bat 220, 91405 Orsay Cedex, France
P. Lecoeur
Affiliation:
Laboratoire de Cristallographie et de Sciences des Matériaux, CRISMAT- ISMRA, CNRS UMR 6508, 6 bd du Maréchal Juin, 14050 Caen Cedex, France
W. Prellier
Affiliation:
Laboratoire de Cristallographie et de Sciences des Matériaux, CRISMAT- ISMRA, CNRS UMR 6508, 6 bd du Maréchal Juin, 14050 Caen Cedex, France
B. Mercey
Affiliation:
Laboratoire de Cristallographie et de Sciences des Matériaux, CRISMAT- ISMRA, CNRS UMR 6508, 6 bd du Maréchal Juin, 14050 Caen Cedex, France
Get access

Abstract

The effects of the growth conditions and the lattice strains of pulsed laser deposited (PLD) La0.7Sr0.3MnO3 (LSMO) thin films upon the magnetic behavior have been studied using magneto-optical Kerr effect (MOKE) at room temperature. First, the structural quality of the films was investigated by XRD and the surface morphology was studied using AFM. It is shown that both surface morphology and crystallinity are optimized when the target-to-substrate distance and the oxygen pressure are chosen in agreement with a PD3 scaling law. Secondly, hysteresis loops have been recorded along the [100], [110] and [001] directions and the easy directions of magnetization have been determined for both stress states, i.e. tension on SrTiO3 and compression on LaAlO3. In tensile films, the whole plane is found to be easy, whereas, in compressive films, the easy axis should be an intermediate direction between the film's plane and its normal. Moreover, tensile films deposited under optimized growth conditions exhibit the largest anisotropy coefficient (K1eff = -6.9×105 erg/cm3).

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Venkatesan, T., Rajeswari, M., Dong, Z., Ogale, S. B. and Ramesh, R., Phil. Trans. R. Soc. Lond. A 356, 16611680(1998).CrossRefGoogle Scholar
2. Wolfman, J., Haghiri-Gosnet, A. M., Raveau, B., Vieu, C., Cambril, E., Cornette, A. and Launois, H., J. Appl. Phys. 89, 6955 (2001).Google Scholar
3. Suzuki, Y., Hwang, H. Y., Cheong, S-W., Siegrist, T., Dover, R. B. van, Asamitsu, A. and Tokura, Y., J. Appl. Phys. 83, 7064 (1998).CrossRefGoogle Scholar
4. Suzuki, Y., Hwang, H. Y., Cheong, S-W. and Dover, R. B. van, Appl. Phys. Lett. 71, 140 (1997).CrossRefGoogle Scholar
5. Haghiri-Gosnet, A. M., Koubaa, M., Desfeux, R., Lecoeur, P., Prellier, W. and Mercey, B., submitted to Thin Solid Films.Google Scholar
6. Haghiri-Gosnet, A. M., Hervieu, M., Simon, Ch., Mercey, B. and Raveau, B., J. Appl. Phys. 88 (2000) 3545.CrossRefGoogle Scholar
7. Kim, H.S. and Kwok, H.S., Appl. Phys. Lett. 61, 2234 (1992).CrossRefGoogle Scholar
8. Lebedev, O. I., Tendeloo, G. Van, Amelinckx, S., Ju, H. L., , Kannan and Krishnan, M., Philosophical Magasine 80, 673 (2000).Google Scholar
9. Ferré, J., Pénissard, G., Marlière, C., Renard, D., Beauvillain, P. and Renard, J. P., Appl. Phys. Lett. 56, 1588 (1990).CrossRefGoogle Scholar
10. O'Donnell, J., Rzchowski, M. S., Eckstein, J. N. and Bosovic, I., Appl. Phys. Lett. 72, 1775 (1998).CrossRefGoogle Scholar
11. Kwon, C., Robson, M. C., Kim, K.-C., Gu, J. Y., Lofland, S. E., Bhagat, S. M., Trajanovic, Z., Rajeswari, M., Venkatesan, T., Kratz, A. R., Gomez, R. D. and Ramesh, R., J. Magn. Magn. Matter. 172, 229 (1997).Google Scholar
12. Tsui, F., Smoak, M. C., T. Nath, K. and Eom, C. B., Appl. Phys. Lett. 76, 2421 (2000).CrossRefGoogle Scholar
13. Cagnon, L., Devolder, T., Cortes, R., Morrone, A., Schmidt, J. E., Chappert, C. and Allongue, P., Phys. Rev. B 63, 104419 (2001).CrossRefGoogle Scholar
14. Berndt, L. M., Balbarin, Vincent and Suzuki, Y., Appl. Phys. Lett. 77, 2903 (2000).CrossRefGoogle Scholar
15. Nath, T. K., Rao, R. A., Lavric, D., Eom, C. B., Wu, L. and Tsui, F., Appl. Phys. Lett. 74, 1645 (1999).CrossRefGoogle Scholar
16. Steren, L. B., Sirena, M. and Guimpel, J., J. Appl. Phys. 87, 6755 (2000).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 19 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 27th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-4dk4j Total loading time: 0.344 Render date: 2021-01-27T16:37:29.187Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Magnetic Anisotropy of Strained La0.7Sr0.3MnO3 Thin Films Studied by MOKE
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Magnetic Anisotropy of Strained La0.7Sr0.3MnO3 Thin Films Studied by MOKE
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Magnetic Anisotropy of Strained La0.7Sr0.3MnO3 Thin Films Studied by MOKE
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *