Skip to main content Accessibility help
×
Home
Hostname: page-component-54cdcc668b-zqbsd Total loading time: 0.261 Render date: 2021-03-08T17:17:21.304Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Low Temperature Laser-Doping Process Using PSG and BSG Films for Poly-Si TFTs

Published online by Cambridge University Press:  14 March 2011

Cheon-Hong Kim
Affiliation:
School of Electrical Engineering, Seoul National University, San 56-1 Shinlim-dong, Kwanak-gu, Seoul 151-742, Korea
Sang-Hoon Jung
Affiliation:
School of Electrical Engineering, Seoul National University, San 56-1 Shinlim-dong, Kwanak-gu, Seoul 151-742, Korea
Jae-Hong Jeon
Affiliation:
School of Electrical Engineering, Seoul National University, San 56-1 Shinlim-dong, Kwanak-gu, Seoul 151-742, Korea
Min-Koo Han
Affiliation:
School of Electrical Engineering, Seoul National University, San 56-1 Shinlim-dong, Kwanak-gu, Seoul 151-742, Korea
Get access

Abstract

A simple low-temperature excimer-laser doping process employing phosphosilicate glass (PSG) and borosilicate glass (BSG) films as dopant sources is proposed in order to form source and drain regions for polycrystalline silicon thin film transistors (poly-Si TFTs). We have successfully controlled sheet resistance and dopant depth profile of doped poly-Si films by varying PH3/SiH4 flow ratio, laser energy density and the number of laser pulses. The penetration depth and the surface concentration of dopants were increased with increasing laser energy density and the number of laser pulses. The minimum sheet resistance of 450ω/ for phosphorus (P) doping and 1100ω/ for boron (B) doping were successfully obtained. Our experimental results show that the proposed laser-doping process is suitable for source/drain formation of poly-Si TFTs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Hack, M., Mei, P., Lujan, R. and Lewis, A. G., JNCS 164–166, 727730 (1993).Google Scholar
2. Sera, K., Okumura, F., Kaneko, S., Itoh, S., Hotta, K. and Hoshino, H., J. Appl. Phys. 67, 2359, (1990).CrossRefGoogle Scholar
3. Sameshima, T., Tomita, H. and Usui, S., Jpn. J. Appl. Phys. 27, L1935–L1937 (1988).CrossRefGoogle Scholar
4. Guist, G. K. and Sigmon, T. W., IEEE Electron Device Lett. 18, 394 (1997).CrossRefGoogle Scholar
5. Inui, S., Nii, T. and Matumoto, S., IEEE Electron Device Lett. 12, 702 (1991).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 20 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 8th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Low Temperature Laser-Doping Process Using PSG and BSG Films for Poly-Si TFTs
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Low Temperature Laser-Doping Process Using PSG and BSG Films for Poly-Si TFTs
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Low Temperature Laser-Doping Process Using PSG and BSG Films for Poly-Si TFTs
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *