Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T05:58:53.326Z Has data issue: false hasContentIssue false

Liquidus Temperature of High-Level Waste Borosilicate Glasses With Spinel Primary Phase

Published online by Cambridge University Press:  10 February 2011

Pavel Hrma
Affiliation:
Pacific Northwest National Laboratory, Box 999, Richland, WA MARTIN MIKA
John Vienna
Affiliation:
Pacific Northwest National Laboratory, Box 999, Richland, WA MARTIN MIKA
Jarrod Crum
Affiliation:
Pacific Northwest National Laboratory, Box 999, Richland, WA MARTIN MIKA
Greg Piepel
Affiliation:
Pacific Northwest National Laboratory, Box 999, Richland, WA MARTIN MIKA
Martin Mika
Affiliation:
Institute of Chemical Technology, Technicka 5, 16628 Prague, Czech Republic
Get access

Abstract

Liquidus temperatures (TL) were measured for high-level waste (HLW) borosilicate glasses covering a Savannah River composition region. The primary crystallization phase for most glasses was spinel, a solid solution of trevorite (NiFe2O4) with other oxides (FeO, MnO, and Cr2O3). The TL values ranged from 859 to 1310°C. Component additions increased the TL (per mass%) as Cr2O3 261°C, NiO 85°C, TiO2 42°C, MgO 33°C, A12O3 18°C, and Fe2O3 18°C and decreased the TL (per mass%) as Na2O −29°C, Li2O −28°C, K2O −20°C, and B2O3 −8°C. Other oxides (CaO, MnO, SiO2, and U3O8) had little effect. The effect of RuO2 is not clear.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hrma, P., Piepel, G. F., Schweiger, M. J., Smith, D. E., Kim, D.-S., Redgate, P. E., Vienna, J. D., LoPresti, C. A., Simpson, D. B., Peeler, D. K., and Langowski, M. H.. 1994. Property/Composition Relationships for Hanford High-Level Waste Glasses Melting at 1150°C, PNL-10359, Pacific Northwest Laboratory, Richland, Washington Google Scholar
2 Hrma, P., Piepel, G. F., Redgate, P. E., Smith, D. E., Schweiger, M. J., Vienna, J. D., and Kim, D.-S.. 1995. Ceram. Trans. 61, 505513.Google Scholar
3 Mika, M., Schweiger, M. J., and Hrma, P.. 1997. “Liquidus Temperature of Spinel Precipitating High-Level Waste Glass,” Scientific Basis for Nuclear Waste Management (Editors Gray, W. J. and Triay, I. R.), Vol. 465, p. 7178, Material Research Society, Pittsburgh, Pennsylvania.Google Scholar
4 Kim, K.-S. and Hrma, P.. 1994. Ceram. Trans. 45, 327337.Google Scholar
5 Reynolds, J. G. and Hrma, P.. 1997. Scientific Basis for Nuclear Waste Management (Editors Gray, W. J. and Triay, I. R.), Vol. 465, p. 6570, Material Research Society, Pittsburgh, Pennsylvania.Google Scholar
6 Vienna, J. D., Hrma, P., Kim, D. S., Schweiger, M. J., and Smith, D. E.. 1996.Ceram. Trans. 72, 427436.Google Scholar
7 Hrma, P. and Smith, P. A.. 1994. “The Effect of Vitrification Technology on Waste Loading,” Proc. Int. Top. Meeting Nucl. Hazard Waste Manag. Spectrum ‘94, Vol. 2, pp. 862867.Google Scholar
8 Hrma, P.. 1994. Ceram. Trans. 45, 391401.Google Scholar
9 Hrma, P., Vienna, J. D., and Schweiger, M. J.. 1996. Ceram. Trans. 72, 449456.Google Scholar
10 Hrma, P. and Robertus, R. J.. 1993. Ceram. Eng. Sci. Proc. 14 [11-12] 187203.Google Scholar
11 Piepel, G. F., Anderson, C. M., and Redgate, P. E.. 1993. 1993 Proceedings of the Section on Physical and Engineering Sciences, 205227, American Statistical Association, Alexandria, Virginia.Google Scholar
12 Hrma, P.. 1998. Ceram. Trans. 87, 245252.Google Scholar
13 Hrma, P., Vienna, J. D., Mika, M., Crum, J. V., and Piepel, G. F.: Liquidus Temperature Data for DWPF Glass, PNNL- 1170, Pacific Northwest National Laboratory. Richland, Washington, 1999.Google Scholar
14 Schreiber, H. D., Settle, F. A., Jamison, P. L., Eckenrode, J. P., and Headley, G. W.. 1986. J. Less-Common Metals, 115, 145154.Google Scholar
15 Kim, D-S., Hrma, P., Smith, D. E., and Schweiger, M. J.. 1994. Ceram. Trans. 39, 179189.Google Scholar
16 Capobianco, C. J. and Drake, M. J.. 1990. Geochem. Cosmochim. Acta 54, 869874.Google Scholar