Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-ptlz9 Total loading time: 0.418 Render date: 2023-02-04T19:59:15.334Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Liquid-phase Epitaxial Growth of BiFeO3 Thick Films using an Infrared Irradiation

Published online by Cambridge University Press:  01 February 2011

Takeshi Kawae
Affiliation:
kawae@ec.t.kanazawa-u.ac.jp, Kanazawa University, Graduate School of Science and Technology, Kakuma-machi, Kanazawa, 920-1192, Japan
Mitsuhiro Shiomoto
Affiliation:
2025shio@ee.t.kanazawa-u.ac.jp, Kanazawa University, Kanazawa, 920-1192, Japan
Hisashi Tsuda
Affiliation:
3028tsud@ee.t.kanazawa-u.ac.jp, Kanazawa University, Kanazawa, 920-1192, Japan
Satoru Yamada
Affiliation:
satoru@ishikawa-nct.ac.jp, Ishikawa National College of Technology, Kahoku-gun, 920-0392, Japan
Masanori Nagao
Affiliation:
NAGAO.Masanori@nims.go.jp, National Institute for Material Science, Tsukuba, 305-0047, Japan
Akiharu Morimoto
Affiliation:
amorimot@ec.t.kanazawa-u.ac.jp, Kanazawa University, Kanazawa, 920-1192, Japan
Minoru Kumeda
Affiliation:
kumeda@ec.t.kanazawa-u.ac.jp, Kanazawa University, Kanazawa, 920-1192, Japan
Get access

Abstract

Epitaxial BiFeO3 (BFO) thick films were fabricated on SrTiO3 (STO) substrates by a simple liquid-phase epitaxy (LPE) growth technique. To avoid the evaporation of Bi, in this process, we used the lid substrate. As starting materials, we used calcined powder or amorphous films deposited by pulsed laser ablation. The fabricated films were found to have a single perovskite phase and be (100)-oriented. Cube-on-cube epitaxial growth of film on the STO substrate was also confirmed by ϕ-scan measurements. The films grown on the substrate display a multigrain structure with a maximum in-plane size of approximately 100μm, and the film thickness was about 3-35 μm. The interface structure between the film and the substrate was relatively smooth. These results indicate that the proposed simple LPE technique is highly suitable for the fabrication of BFO thick films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, J., Neaton, J. B., Zheng, H., Nagarajan, V., Ogale, S. B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D. G., Waghmare, U. V., Spaldin, N. A., Rabe, K. M., Wuttig, M., and Ramesh, R.: Science. 299 (2003) 1719.Google Scholar
2. Wang, J., Zheng, H., Ma, Z., Prasertchoug, S., Wuttig, M., Droopad, R., Yu, J., Eisenbeiser, K., and Ramesh, R.: Appl. Phys. Lett. 85 (2004) 2574.Google Scholar
3. Yun, K. Y., Noda, M., Okuyama, M., Saeki, H., Tabata, H., and Saito, K.: J. Appl. Phys. 96 (2004) 3399.Google Scholar
4. Singh, S. K. and Ishiwara, H.: Jpn. J. Appl. Phys. 44 (2005) L734.Google Scholar
5. Gonzalez, A. H., Simoes, A. Z., Cavalcante, L. S., Longo, E., Varela, J. A., and Riccardi, C. S.: Appl. Phys. Lett. 90 (2007) 052906.Google Scholar
6. Lebeugle, D., Colson, D., Forget, A. and Viret, M.: Appl. Phys. Lett. 91 (2007) 022907.Google Scholar
7. Qi, X., Dho, J., Blamire, M. G., Jia, Q., Lee, J. S., Foltyn, S. and MacManus-Driscoll, J. L.: J. Magn. Magn. Mater. 283 (2004) 415.Google Scholar
8. Wang, Y. P., Zhou, L., Zhang, M. F., Chen, X. Y., Liu, J.-M., and Liu, Z. G.: Appl. Phys. Lett. 84 (2004) 1731.Google Scholar
9. Pradhan, A. K., Zhang, K., Hunter, D., Dadson, J. B., Loutus, G. B., Bhattachrya, P., Katiyar, R., Zhang, J., Sellmyer, D. J., Roy, U. N., Cui, Y., and Burger, A.: J. Appl. Phys. 97 (2005) 093903.Google Scholar
10. Koizumi, H., Nishizeki, N., and Ikeda, T.: Jpn. J. Appl. Phys. 3 (1964) 495.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Liquid-phase Epitaxial Growth of BiFeO3 Thick Films using an Infrared Irradiation
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Liquid-phase Epitaxial Growth of BiFeO3 Thick Films using an Infrared Irradiation
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Liquid-phase Epitaxial Growth of BiFeO3 Thick Films using an Infrared Irradiation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *