Skip to main content Accessibility help
×
Home

Light Splitting Function of Branched Chains of Microspheres Fabricated by Self-Assembly Process

Published online by Cambridge University Press:  16 March 2012

Tadashi Mitsui
Affiliation:
Surface Physics and Structure Unit, National Institute for Materials Science, Sakura 3-13, Tsukuba 305-0003, JAPAN.
Yutaka Wakayama
Affiliation:
Nano-Electronic Materials Unit, National Institute for Materials Science, Namiki 1-1, Tsukuba 305-0044, JAPAN.
Tsunenobu Onodera
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JAPAN.
Takeru Hayashi
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JAPAN.
Naoki Ikeda
Affiliation:
Nanotechnology Innovation Station, National Institute for Materials Science, Sengen 1-2-1, Tsukuba 305-0047, JAPAN.
Yoshimasa Sugimoto
Affiliation:
Nanotechnology Innovation Station, National Institute for Materials Science, Sengen 1-2-1, Tsukuba 305-0047, JAPAN.
Tadashi Takamasu
Affiliation:
Surface Physics and Structure Unit, National Institute for Materials Science, Sakura 3-13, Tsukuba 305-0003, JAPAN.
Hidetoshi Oikawa
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JAPAN.
Get access

Abstract

Using a self-assembly process, we fabricated ordered chains of transparent polystyrene microspheres that have 30°- and 60°-branched structures and that act as coupled-resonator optical waveguides (CROWs). We then observed the optical properties of propagation light through the CROWs. The light spectra were directly measured by guide-collection-mode near-field scanning optical microscopy (NSOM) techniques. The spectrum of light propagating to the 60°-branch shows some sharp peaks, which seem to be associated with whispering gallery modes (WGMs). On the other hand, the spectrum of light propagating to the 30°-branch shows rather broad peaks. Moreover, we observed the detailed structures of the CROWs by high-resolution scanning electron microscopy (HR-SEM), and performed a finite-difference time-domain (FDTD) simulation to explain the NSOM spectra. The results suggest that the microspheres’ branching chains themselves have a light-splitting function, which is a kind of wavelength-selective filter.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Almeida, V. R., Barrios, C. A., Panepucci, R. R., and Lipson, M., Nature 431, 10811084 (2004).10.1038/nature02921CrossRefGoogle Scholar
2. Hill, M. T., Dorren, H. J. S., de Vries, T., Leijtens, X. J. M., den Besten, J. H., Smalbrugge, B., Oei, Y.-S., Binsma, H., Khoe, G.-D., and Smit, M. K., Nature 432, 206209 (2004).10.1038/nature03045CrossRefGoogle Scholar
3. Möller, B. M., Woggon, U., and Artemyev, M. V., Opt. Lett. 30, 21162118 (2005).10.1364/OL.30.002116CrossRefGoogle Scholar
4. Yariv, A., Xu, Y., Lee, R. K., and Scherer, A., Opt. Lett. 24, 711713 (1999).10.1364/OL.24.000711CrossRefGoogle Scholar
5. Astratov, V. N., Franchak, J. P., and Ashili, S. P., Appl. Phys. Lett. 85, 55085510 (2004).10.1063/1.1832737CrossRefGoogle Scholar
6. van Blaaderen, A., Ruel, R., and Wiltzius, P., Nature, 385, 321324 (1997).10.1038/385321a0CrossRefGoogle Scholar
7. Onodera, T., Takaya, Y., Mitsui, T., Wakayama, Y., and Oikawa, H., Jpn. J. Appl. Phys. 47, 14041407 (2008).10.1143/JJAP.47.1404CrossRefGoogle Scholar
8. Akiyama, S., Popovic, M. A., Rakich, P. T., Wada, K., Michel, E., Haus, H. A., Ippen, E. P., and Kimerling, L. C., J. Lightwave Technol. 23, 22712277 (2005).10.1109/JLT.2005.850047CrossRefGoogle Scholar
9. Talneau, A., Le Gouezigou, L., Bouadma, N., Kafesaki, M., Soukoulis, C. M., and Agio, M., Appl. Phys. Lett. 80, 547549 (2002).10.1063/1.1445270CrossRefGoogle Scholar
10. Barrelet, C. J., Greytak, A. B., and Lieber, C. M., Nano Lett. 4, 19811985 (2004).10.1021/nl048739kCrossRefGoogle Scholar
11. Takazawa, K., Kitahama, Y., Kimura, Y., and Kido, G., Nano Lett. 5, 12931296 (2005).10.1021/nl050469yCrossRefGoogle Scholar
12. Kapitonov, A. M. and Astratov, V. N., Opt. Lett. 32, 409411 (2007).10.1364/OL.32.000409CrossRefGoogle Scholar
13. Yang, S. and Astratov, V. N., Appl. Phys. Lett. 92, 261111 (2008).10.1063/1.2954013CrossRefGoogle Scholar
14. Chen, Z., Taflove, A., and Backman, V., Opt. Lett. 31, 389391 (2006).10.1364/OL.31.000389CrossRefGoogle Scholar
15. Pishko, S. V., Sewell, P. D., Benson, T. M., and Boriskina, S. V., J. Lightwave Technol. 25, 24872494 (2007).10.1109/JLT.2007.903295CrossRefGoogle Scholar
16. Boriskina, S. V., Opt. Express 15, 1737117379 (2007).10.1364/OE.15.017371CrossRefGoogle Scholar
17. Mitsui, T., Wakayama, Y., Onodera, T., Takaya, Y., and Oikawa, H., Opt. Lett. 33, 11891191 (2008).10.1364/OL.33.001189CrossRefGoogle Scholar
18. Tsai, D. P., Jackson, H. E., Reddick, R. C., Sharp, S. H., and Warmack, R. J., Appl. Phys. Lett. 56, 15151517 (1990).10.1063/1.103160CrossRefGoogle Scholar
19. Lieberman, K., Ben-Ami, N., and Lewis, A., Rev. Sci. Instrum. 67, 35673572 (1996).10.1063/1.1147175CrossRefGoogle Scholar
20. Mitsui, T., Wakayama, Y., Onodera, T., Hayashi, T., Ikeda, N., Sugimoto, Y., Takamasu, T., and Oikawa, H., Adv. Mater. 22, 30223026 (2010).10.1002/adma.201000155CrossRefGoogle Scholar
21. Tymczenko, M., Marsal, L. F., Trifonov, T., Rodriguez, I., Ramiro-Manzano, F., Pallares, J., Rodriguez, A., Alcubilla, R., and Meseguer, F., Adv. Mater. 20, 23152318 (2008).10.1002/adma.200701526CrossRefGoogle Scholar
22. Mitsui, T., Onodera, T., Wakayama, Y., Hayashi, T., Ikeda, N., Sugimoto, Y., Takamasu, T., and Oikawa, H., Opt. Express 19, 2225822267 (2011).10.1364/OE.19.022258CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 21 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 25th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-9l59n Total loading time: 0.221 Render date: 2021-01-25T05:37:53.256Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Light Splitting Function of Branched Chains of Microspheres Fabricated by Self-Assembly Process
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Light Splitting Function of Branched Chains of Microspheres Fabricated by Self-Assembly Process
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Light Splitting Function of Branched Chains of Microspheres Fabricated by Self-Assembly Process
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *