Skip to main content Accessibility help
×
Home

Laser-assisted surface engineering of thin film electrode materials for lithium-ion batteries

Published online by Cambridge University Press:  22 August 2011

Wilhelm Pfleging
Affiliation:
Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe, Germany
Robert Kohler
Affiliation:
Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe, Germany
Steffen Scholz
Affiliation:
Manufacturing Engineering Centre, School of Engineering, Cardiff University, CF24 3AA, UK
Carlos Ziebert
Affiliation:
Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe, Germany
Johannes Proell
Affiliation:
Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe, Germany
Get access

Abstract

Electrode thin films made of LiCoO2, Li-Mn-O and SnO2 were synthesized by rf magnetron sputtering on silicon and stainless steel substrates. In order to increase the active surface direct laser structuring methods using ns- and ps-laser sources were applied. A laser system operating at a wavelength of 248 nm with a pulse length of 4-6 ns and repetition rates up to 500 Hz enabled the formation of high aspect ratio micro- and sub-micron structures with feature sizes down to less than 400 nm. Subsequent to the laser structuring process, laser annealing of LiCoO2 and Li-Mn-O was performed in order to achieve an appropriate crystalline phase which shows improved electrochemical cycling performance. Laser annealing was applied via a high power diode laser system operating at a wavelength of 940 nm. In case of LiCoO2 the high temperature phase was obtained through laser-annealing while for Li-Mn-O the spinel phase was formed. For both LiCoO2 and Li-Mn-O thin films appropriate annealing parameters were temperatures of up to 680 °C and an annealing time of 100 s.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

1. West, W.C., Whitacre, J.F., White, V., and Ratnakumar, B.V., Journal of Micromechanics and Microengineering, 12, 58 (2002).CrossRefGoogle Scholar
2. Baggetto, L., Niessen, R.A.H., Roozeboom, F., and Notten, P.H.L., Advanced Functional Materials, 18, 1057 (2008).CrossRefGoogle Scholar
3. Song, J., Yang, X., Zeng, S.S., Cai, M.Z., Zhang, L.T., Dong, Q.F., Zheng, M.S., Wu, S.T., and Wu, Q.H., Journal of Micromechanics and Microengineering, 19, (2009).Google Scholar
4. Scrosati, B. and Garche, J., Journal of Power Sources, 195, 2419 (2010).CrossRefGoogle Scholar
5. Liu, C., Li, F., Ma, L.P., and Cheng, H.M., Advanced Materials, 22, E28 (2010).CrossRefGoogle ScholarPubMed
6. Hart, R.W., White, H.S., Dunn, B., and Rolison, D.R., Electrochemistry Communications, 5, 120 (2003).CrossRefGoogle Scholar
7. Kobayashi, H., Uebou, Y., Ishida, T., Tamura, S., Mochizuki, S., Mihara, T., Tabuchi, M., Kageyama, H., and Yamamoto, Y., Journal of Power Sources, 97–8, 229 (2001).Google Scholar
8. Liu, P.Y., Chen, J.F., and Sun, W.D., Vacuum, 76, 7 (2004).CrossRefGoogle Scholar
9. Kwoka, M., Ottaviano, L., Waczynska, N., Santucci, S., and Szuber, J., Applied Surface Science, 256, 5771 (2010).CrossRefGoogle Scholar
10. Kuwata, N., Kumar, R., Toribami, K., Suzuki, T., Hattori, T., and Kawamura, J., Solid State Ionics, 177, 2827 (2006).CrossRefGoogle Scholar
11. Xia, H., Tang, S.B., and Lu, L., Journal of the Korean Physical Society, 51, 1055 (2007).CrossRefGoogle Scholar
12. Chiu, K.F., Chen, C.C., Lin, K.M., Lin, H.C., Lo, C.C., Ho, W.H., and Jiang, C.S., Vacuum, 84, 1296 (2010).CrossRefGoogle Scholar
13. Song, J., Cai, M.Z., Dong, Q.F., Zheng, M.S., Wu, Q.H., and Wu, S.T., Electrochimica Acta, 54, 2748 (2009).CrossRefGoogle Scholar
14. Ketterer, B., Vasilchina, H., Seemann, K., Ulrich, S., Besser, H., Pfleging, W., Kaiser, T., and Adelhelm, C., International Journal of Materials Research, 99, 1171 (2008).CrossRefGoogle Scholar
15. Ziebert, C., Ketterer, B., Rinke, M., Adelhelm, C., Ulrich, S., Zum Gahr, K.H., Indris, S., and Schimmel, T., Surface & Coatings Technology, 205, 1589 (2010).CrossRefGoogle Scholar
16. Golodnitsky, D., Yufit, V., Nathan, M., Shechtman, I., Ripenbein, T., Strauss, E., Menkin, S., and Peled, E., Journal of Power Sources, 153, 281 (2006).CrossRefGoogle Scholar
17. Baggetto, L., Oudenhoven, J.F.M., van Dongen, T., Klootwijk, J.H., Mulder, M., Niessen, R.A.H., de Croon, M.H.J.M., and Notten, P.H.L., Journal of Power Sources, 189, 402 (2009).CrossRefGoogle Scholar
18. Jeyaseelan, A.V. and Rohan, J.F., Applied Surface Science, 256, S61 (2009).CrossRefGoogle Scholar
19. Kohler, R., Smyrek, P., Ulrich, S., Bruns, M., Trouillet, V., and Pfleging, W., Journal of Optoelectronics and Advanced Materials, 12, 547 (2010).Google Scholar
20. Kohler, R., Proell, J., Ulrich, S., Trouillet, V., Indris, S., Przybylski, M., and Pfleging, W., Laser-Based Micro- and Nanopackaging and Assembly III, 7202, 720207 (2009).Google Scholar
21. Kohler, R., Bruns, M., Smyrek, P., Ulrich, S., Przybylski, M., and Pfleging, W., Laser-Based Micro- and Nanopackaging and Assembly IV, 7585, 75850O (2010).Google Scholar
22. Zhang, W.J., Journal of Power Sources, 196, 13 (2011).CrossRefGoogle Scholar
23. Pfleging, W., Przybylski, M., and Bruckner, H.J., Laser-based Micropackaging, 6107, G1070 (2006).Google Scholar
24. Karnakis, D., Rutterford, G., Knowles, M., Dobrev, T., Petkov, P., and Dimov, S., Photon Processing in Microelectronic and Photonics V, 6106, 60604 (2006).Google Scholar
25. Kratzsch, A., Ulrich, S., Leiste, H., Stuber, M., and Holleck, H., Surface & Coatings Technology, 119, 949 (1999).CrossRefGoogle Scholar
26. Proell, J., Kohler, R., Adelhelm, C., Bruns, M., Torge, M., Heißler, S., Przybylski, M., Ziebert, C., and Pfleging, W., Laser-based Micro- and Nanopackaging and Assembly V, 7921, in press (2011).Google Scholar
27. Kohler, R., Besser, H., Hagen, M., Ye, J., Ziebert, C., Ulrich, S., Proell, J., and Pfleging, W., Microsystem Technologies, 17, 225 (2011).CrossRefGoogle Scholar
28. Julien, C.M. and Massot, M., Materials Science and Engineering B-Solid State Materials for Advanced Technology, 100, 69 (2003).CrossRefGoogle Scholar
29. Julien, C.M. and Massot, M., Materials Science and Engineering B-Solid State Materials for Advanced Technology, 97, 217 (2003).CrossRefGoogle Scholar
30. Edstrom, K., Gustafsson, T., and Thomas, J.O., Electrochimica Acta, 50, 397 (2004).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 14 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 24th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-gtgjg Total loading time: 0.66 Render date: 2021-01-24T19:48:19.522Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Laser-assisted surface engineering of thin film electrode materials for lithium-ion batteries
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Laser-assisted surface engineering of thin film electrode materials for lithium-ion batteries
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Laser-assisted surface engineering of thin film electrode materials for lithium-ion batteries
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *