Skip to main content Accessibility help
×
Home

Laser Crystallization of Silicon for Large Area Electronics

Published online by Cambridge University Press:  01 February 2011


Toshiyuki Sameshima
Affiliation:
tsamesim@cc.tuat.ac.jp, Tokyo University of Agriculture & Technology, Graduate School of Engineering, 2-24-16, Nakamachi, Koganei, 184-8588, Japan, 81-42-388-7109, 81-42-388-7109
Corresponding
E-mail address:

Abstract

Laser crystallization of silicon is discussed for forming polycrystalline silicon thin films used to fabricate polycrystalline silicon thin film transistors (poly-Si TFTs). Laser-induced rapid heating is important for crystalline film formation with a low thermal budget. Structural and electrical properties of poly-Si films are discussed. Reduction of electrical active defects located at grain boundaries is essential for achieving poly-Si TFTs with high performances. The internal film stress is attractive to increase the carrier mobility. Recent development in laser crystallization methods with pulsed and continuous wave (CW) lasers is then reviewed. Control of the heat flow results in crystalline grain growth in the lateral direction, which is essential for fabrication of large crystalline grains. We also report an annealing method using a high power infrared semiconductor laser. High power lasers will be attractive for rapid crystallization of silicon films over a large area and activation of doped regions.


Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Uchikoga, S. and Ibaraki, N., Thin Solid Films, 383 19 (2001).CrossRefGoogle Scholar
2 Inoue, S., Sadao, K., Ozawa, T., Kobashi, Y., Kwai, H., Kitagawa, T. and Shimoda, T., Tech. Dig. IEDM, 2000, p 197.Google Scholar
3 Shibata, K. and Takahashi, H., Proc Int. Workshop on Active Matrix Liquid Crystal Displays'01 (Tokyo, 2001), p 219.Google Scholar
4 Gosain, Dharam Pal, Noguchi, Takashi, Machida, Akio and Usui, Setsuo, Proc. in Workshop on Active Matrix Liquid Displays (Tokyo, 1999) p239.Google Scholar
5 Sameshima, T., Usui, S. and Sekiya, M., IEEE Electron Device Lett., 7 276 (1986).CrossRefGoogle Scholar
6 Sera, K., Okumura, F., Uchida, H., Itoh, S., Kaneko, S. and Hotta, K., IEEE Trans. Electron Devices 36 2868 (1989).CrossRefGoogle Scholar
7 Serikawa, T., Shirai, S., Okamoto, A. and Suyama, S., Jpn. J. Appl. Phys., 28 L1871 (1989).CrossRefGoogle Scholar
8 Kohno, A., Sameshima, T., Sano, N., Sekiya, M. and Hara, M., IEEE Trans. Electron Devices, 42 251 (1995).CrossRefGoogle Scholar
9 Liu, P. L., Yen, R., Bloembergen, N. and Hodson, R.T., Appl. Phys. Lett., 34, 864 (1979).CrossRefGoogle Scholar
10 Wood, R. F. and Giles, C. E., Rhys. Rev., B23, 2923 (1981).CrossRefGoogle Scholar
11 Carslaw, H. S. and Jaeger, J. C., Conduction on Heat in Solid, Oxford University Press, Oxford, 1959, Chapters 2 and 10.Google Scholar
12 Goldsmith, A., Waterman, T. E. and Hirschorn, H. J., Handbook of Thermophysical Properties of Solid Materials, Pergamon Press, New York, 1961, Vols. 1 and 3.Google Scholar
13 Galvin, G. J., Thompson, M. O., Mayer, J. W., Hammond, R. B., Paulter, N. and Peercy, P.S., Phys. Pev. Lett., 48, 33 (1982).CrossRefGoogle Scholar
14 Sameshima, T., Hara, M. and Usui, S., Jpn. J. Appl. Phys., 28, 1789 (1989).CrossRefGoogle Scholar
15 Higashi, S., Ph.D. dissertation, Tokyo University of Agriculture and Technology, 2001, Chap 3, p. 34.Google Scholar
16 Higashi, S., Andoh, N., Kamisako, K. and Sameshima, T., Jpn. J. Appl. Phys., 40, 731 (2001).CrossRefGoogle Scholar
17 Kitahara, K., Moritani, A., Hara, A. and Okabe, M., Jpn. J. Appl. Phys., 38, L1312 (1999).CrossRefGoogle Scholar
18 Sameshima, T., Saitoh, K., Aoyama, N., Higashi, S., Kondo, M. and Matsuda, A., Jpn. J. Appl. Phys., 38, 1892 (1999).CrossRefGoogle Scholar
19 Ditizio, R. A., Liu, G., Fonash, S. J., Hseih, B.-C. and Greve, D. W., Appl. Phys. Lett., 56, 1140 (1990).CrossRefGoogle Scholar
20 Wu, I-W, Lewis, A.G., Huang, T-Y., Chiang, A., IEEE Electron Device Lett., 10, 123 (1989).CrossRefGoogle Scholar
21 Mitra, U., Rossi, B. and Khan, B., J. Electrochem. Soc., 138, 3420 (1991).CrossRefGoogle Scholar
22 Jousse, D., Delage, S. L. and Iyer, S. S., “Grain-boundary states and hydrogenation of fine-grained polycrystallione silicon films deposited by molecular beams,” Phil. Mag., B63, 443 (1991).CrossRefGoogle Scholar
23 Tsunoda, Y., Sameshima, T. and Higashi, S., Jpn. J. Appl. Phys., 39, 1656 (2000).CrossRefGoogle Scholar
24 Sameshima, T. and Satoh, M., Jpn. J. Appl. Phys. 36, L687 (1997).CrossRefGoogle Scholar
25 Asada, K., Sakamoto, K., Watanabe, T., Sameshima, T. and Higashi, S., Jpn. J. Appl. Phys., 39, 3883 (2000).CrossRefGoogle Scholar
26 Sameshima, T., Hayasaka, H., Maki, M., Masuda, A., Matsui, T. and Kondo, M., Proc. in Workshop on Active Matrix Flat panel Displays and Devices (Shinjuku, 2006) p143.Google Scholar
27 Sameshima, T., Hara, M. and Usui, S., Mat. Res. Soc. Symp. Proc., 158, (PA, 1990) 255.Google Scholar
28 Watakabe, H. and Sameshima, T., IEEE Trans. Electron device 49, 2217 (2002).CrossRefGoogle Scholar
29 Im, J.S. and Kim, H.J., Appl. Phys. Lett., 63 (1993) 1969.CrossRefGoogle Scholar
30 OH, Chang-Ho, Ozawa, M. and Matsumura, M., Jpn. J. Appl. Phys, 37, L492 (1998).CrossRefGoogle Scholar
31 Wilt, Paul Ch. van der, Dijk, B. D. van, Bertens, G. J., Ishihara, R., and Beenakker, C. I. M., Appl. Phys. Lett. 79, 1819 (2001).CrossRefGoogle Scholar
32 Nakata, M., Okumura, H., Kanoh, H., and Hayama, H., H., Proc. in AsiaDisplay/IMID'04 (Tegu, Korea, 2004) p412.Google Scholar
33 Kim, C. H., Song, I. H., Nam, W. J., and Han, M. K., IEEE Electron Device Lett., 23 315 (2002).CrossRefGoogle Scholar
34 Stultz, T. J. and Gibbons, J. F., Appl. Phys. Lett. 39, 498 (1981).CrossRefGoogle Scholar
35 Lee, K. F., Gibbons, J. F., Saraswat, K. C. and Kamins, T. I., Appl. Phys. Lett. 35, 173 (1979).CrossRefGoogle Scholar
36 Hara, A., Takeuchi, F., Takei, M., Suga, K., Yoshino, K., Chida, M., Sano, Y. and Sasai, N., Jpn. J. Appl. Phys, 37, L5 (2002).Google Scholar
37 Tai, M., Hatano, M., Yamaguchi, S., Noda, T., S-Kee, P., Shiba, T. and Ohkura, M., IEEE Trans. Electro. Dev., 51, 934 (2004).CrossRefGoogle Scholar
38 Sameshima, T. and Andoh, N., Jpn. J. Appl. Phys., 44, 7305 (2005).CrossRefGoogle Scholar
39 Sano, N., Maki, M., Andoh, N. and Sameshima, T., Mater. Res. Soc. Symp. Proc. 910, (PA, 2006), A1402.CrossRefGoogle Scholar
40 Viera, G., Huet, S., Boufendi, L., J. Appl. Phys., 90 4175 (2001).CrossRefGoogle Scholar
41 Grove, A. S.: Physics and Technology of Semiconductor Devices, (John Wily & Sons, Inc. 1967) Chap. 3.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 4 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 4th December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-qjxlp Total loading time: 0.492 Render date: 2020-12-04T12:00:14.429Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Fri Dec 04 2020 11:59:50 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Laser Crystallization of Silicon for Large Area Electronics
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Laser Crystallization of Silicon for Large Area Electronics
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Laser Crystallization of Silicon for Large Area Electronics
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *