Skip to main content Accessibility help
×
Home

Label Free DNA Detection Using Large Area Graphene-Based FET Biosensors

Published online by Cambridge University Press:  20 May 2011

Shirui Guo
Affiliation:
Department of Chemistry, University of California, Riverside, 92521
Jian Lin
Affiliation:
Department of Mechanical Engineering, University of California, Riverside, 92521
Miroslav Penchev
Affiliation:
Department of Electrical Engineering, University of California, Riverside, 92521
Emre Yangel
Affiliation:
Department of Electrical Engineering, University of California, Riverside, 92521
Mihrimah Ozkan
Affiliation:
Department of Chemistry, University of California, Riverside, 92521 Department of Electrical Engineering, University of California, Riverside, 92521
Cengiz S. Ozkan
Affiliation:
Department of Mechanical Engineering, University of California, Riverside, 92521
Get access

Abstract

This work describes the fabrication of highly sensitive graphene-based field effect transistor (FET) biosensors in a cost-effective way and its application in label-free DNA detection. CVD graphene was used to achieve mass production of FET device through photolithography method. Non-covalent functionalization of graphene with 1-Pyrenebutanoic acid succinimidyl ester ensures the high conductivity and sensitivity of the device. The present device could reach the low detection limit as low as 3*10-9 M.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

(1) Hahm, J.; Lieber, C. M. Nano Lett. 2004, 4, 51.CrossRefGoogle Scholar
(2) Curreli, M.; Zhang, R.; Ishikawa, F. N.; Chang, H. K.; Cote, R. J.; Zhou, C.; Thompson, M. E. Ieee Transactions on Nanotechnology. 2008, 7, 651.10.1109/TNANO.2008.2006165CrossRefGoogle Scholar
(3) Martinez, M. T.; Tseng, Y. C.; Ormategui, N.; Loinaz, I.; Eritja, R.; Bokor, J. Nano Lett. 2009, 9, 530.10.1021/nl8025604CrossRefGoogle Scholar
(4) Maehashi, K.; Matsumoto, K. Sensors. 2009, 9, 5368.CrossRefGoogle Scholar
(5) Wang, X.; Ozkan, C. S. Nano Lett. 2008, 8, 398.10.1021/nl071180eCrossRefGoogle Scholar
(6) Yamamoto, Y.; Maehashi, K.; Ohno, Y.; Matsumoto, K. Sensors and Materials. 2009, 21, 351.Google Scholar
(7) Chen, J. H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S. Nature Nanotechnology. 2008, 3, 206.10.1038/nnano.2008.58CrossRefGoogle Scholar
(8) Echtermeyer, T. J.; Lemme, M. C.; Baus, M.; Szafranek, B. N.; Geim, A. K.; Kurz, H. Ieee Electron Device Letters. 2008, 29, 952.10.1109/LED.2008.2001179CrossRefGoogle Scholar
(9) Liang, X.; Fu, Z.; Chou, S. Y. Nano Lett. 2007, 7, 3840.10.1021/nl072566sCrossRefGoogle Scholar
(10) Chen, Z.; Lin, Y. M.; Rooks, M. J.; Avouris, P. Physica E: Low-dimensional Systems and Nanostructures. 2007, 40, 228.10.1016/j.physe.2007.06.020CrossRefGoogle Scholar
(11) Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Science. 2008, 319, 1229.CrossRefGoogle Scholar
(12) Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Nature Materials. 2007, 6, 652.10.1038/nmat1967CrossRefGoogle Scholar
(13) Ohno, Y.; Maehashi, K.; Yamashiro, Y.; Matsumoto, K. Nano Letters. 2009, 9, 3318.10.1021/nl901596mCrossRefGoogle Scholar
(14) Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Science. 2009, 324, 1312.CrossRefGoogle Scholar
(15) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Nature. 2009, 457, 706.10.1038/nature07719CrossRefGoogle Scholar
(16) Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Nano Lett. 2008, 9, 30.10.1021/nl801827vCrossRefGoogle Scholar
(17) Yu, Q.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. S. Appl. Phys. Lett. 2008, 93, 113103.10.1063/1.2982585CrossRefGoogle Scholar
(18) Reina, A.; Son, H.; Jiao, L.; Fan, B.; Dresselhaus, M. S.; Liu, Z. F.; Kong, J. Journal of Physical Chemistry C. 2008, 112, 17741.10.1021/jp807380sCrossRefGoogle Scholar
(19) Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S.; Williams, E. D. Nano Lett. 2007, 7, 1643.CrossRefGoogle Scholar
(20) Chen, R. J.; Zhang, Y.; Wang, D.; Dai, H. J. Am. Chem. Soc. 2001, 123, 3838.10.1021/ja010172bCrossRefGoogle Scholar
(21) Lin, J.; D. T., K. A.; Guanxiong, Liu; Xiaoye, Jing; Zhong, Yan; Rong, Li; Mihri, Ozkan; Roger, K. Lake; Alexander, A. Balandin; Ozkan, C. S. Small. 2010.Google ScholarPubMed
(22) Dong, X. C.; Shi, Y.; Huang, W.; Chen, P.; Li, L. J. Adv. Mater. 2010, 22, 1.CrossRefGoogle Scholar
(23) Wehling, T. O.; Lichtenstein, A. I.; Katsnelson, M. I. Appl. Phys. Lett. 2008, 93, 202110.CrossRefGoogle Scholar
(24) Wehling, T. O.; Novoselov, K. S.; Morozov, S. V.; Vdovin, E. E.; Katsnelson, M. I.; Geim, A. K.; Lichtenstein, A. I. Nano Lett. 2008, 8, 173.CrossRefGoogle Scholar
(25) Chen, R. J.; Choi, H. C.; Bangsaruntip, S.; Yenilmez, E.; Tang, X.; Wang, Q.; Chang, Y. L.; Dai, H. J. Am. Chem. Soc. 2004, 126, 1563.10.1021/ja038702mCrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 24 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 22nd January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-86jzp Total loading time: 4.591 Render date: 2021-01-22T17:07:27.056Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Label Free DNA Detection Using Large Area Graphene-Based FET Biosensors
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Label Free DNA Detection Using Large Area Graphene-Based FET Biosensors
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Label Free DNA Detection Using Large Area Graphene-Based FET Biosensors
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *