Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-lzpzj Total loading time: 0.283 Render date: 2021-03-05T17:42:02.197Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Junction Formation in Silicon by Rapid Thermal Annealing

Published online by Cambridge University Press:  22 February 2011

Richard B. Fair
Affiliation:
MCNC, Center for Microelectronic Systems Technologies, Research Triangle Park, N.C. 27709 Department of Electrical Engineering Duke University, Durham, N.C. 27706
Get access

Abstract

The feasibility of using isothermal RTA in annealing ion implanted layers for forming junctions has been investigated for the past 10 years. While many of the scientific details surrounding defect formation, transient diffusion and dopant activation remain to be clarified, RTA intrinsically is a viable annealing process which is essential for fabricating advanced silicon devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Bohm, H. J., Wendt, H., Oppolzer, H., Masseli, K., and Kassing, R., J. Appl. Phys. 62, 2784 (1987).Google Scholar
2. Probst, V., Lippens, P., Hove, L. Van den, Maex, K., Schaber, H., and Keersmaecker, R. De, Proc. of the European Solid State Dev. Res. Conf., Bologna, Italy, 437 (Sept. 1987).Google Scholar
3. Jiang, H., Osburn, C. M., Smith, P., Griffis, D., McGuire, G., Rozgonyi, G. A., Mtg. Electrochem Soc., Los Angeles, Recent News Paper #737 (May 1989).Google Scholar
4. Carey, P. G., Sigmon, T. W., Press, R. L., and Fahlen, T. S., IEEE Electron Device Lett., EDL-6, 291 (1985).CrossRefGoogle Scholar
5. Fair, R. B., Proceedings of the IEEE, Vol. 79, No. 11, 16871705, (1990).Google Scholar
6. PREDICT - PRocess Estimator for the Design of Integrated Circuit Technologies, Microelectronics Center of North Carolina.Google Scholar
7. Nygen, S., Ph.D. Thesis, The Royal Institute of Technology (KTH), Stockholm, Sweden (1989).Google Scholar
8. Verhaar, R. D. J., Bos, A. A., Kraaji, H., Wolters, R.A.M., Maex, K.. and Hove, L. Van den, 19th European Solid State Device Res. Conf., Berlin, Sept. 1989.Google Scholar
9. Marchiando, J. R., Roitman, P., Albers, J., IEEE Trans. Electron Devices, ED–32, 23221 (1985).Google Scholar
10. Michel, A. E., in Rapid Thermal Processing edited by Sedgwick, T. O., Seidel, T. E., and Tsaur, B. Y., (Mat. Res. Soc., Pittsburgh, PA 1986) p. 3.Google Scholar
11. Hodges, R. T., Baglin, J. E. E., Michel, A. E., Mader, S.M., Gelpey, J. C., in Energy Beam-Solid Interactions and Transient Thermal Processing edited by Fan, J. C. C., Johnson, N. M. (Mat. Res. Soc., Pittsburgh, PA,1984) p. 253.Google Scholar
12. Fair, R. B., Wortman, J. J., Liu, J., J. Electrochem. Soc., 131, 2387 (1984).CrossRefGoogle Scholar
13. Hofker, W. K., Philips Res. Rep., 1 (1975).Google Scholar
14. Fair, R. B., IEEE Trans. Electron Devices, 35, 285 (1988).Google Scholar
15. Servidori, M., Angelucci, R., Cembali, F., Negrini, P., Solmi, S., Zaumseil, P., and Winter, U., J. Appl. Phys., 61,1834 (1987).CrossRefGoogle Scholar
16. Solmi, S., Angelucci, R., Cembali, F., Servidori, M., and Anderle, M., Appl. Phys. Lett., 51, 331 (1987).CrossRefGoogle Scholar
17. Cho, K., Numan, M., Finstad, R. G., Chu, W. K., Liu, J., Wortman, J. J., Appl. Phys. Lett., 47, 1321 (1985).Google Scholar
18. Kim, Y., Massoud, H. Z. and Fair, R. B., J. Electron Mater, 18, 143 (1989).CrossRefGoogle Scholar
19. Antoniadis, D. A., Lin, A. M., Dutton, R. W., Appl. Phys. Lett., 33, 1030 (1978).CrossRefGoogle Scholar
20. Mizuo, S. and Higuchi, H., Jpn. J. Appl. Phys., 20, 739 (1981).CrossRefGoogle Scholar
21. Harris, R. M. and Antoniadis, D. A., Appl. Phys. Lett., 43, 937 (1983).CrossRefGoogle Scholar
22. Jones, K. S., Prussin, S., and Weber, E. R., J. Appl. Phys., 62, 4114 (1987).Google Scholar
23. Seidel, T. E., Lischner, D. J., Pai, C. S., Knoell, R. V., Maher, D. M., and Jacobson, D. C., Nucl. Inst. Methods Phys. Res. B, 7/8, 251 (1985).CrossRefGoogle Scholar
24. Seidel, T. E., Pai, C. S., Lischner, D. J., Maher, D. M., Knoell, R. V., Williams, J. S., Penumalli, B. R., and Jacobson, D. C., in Proceedings of the Materials Research Society edited by Biegelsen, D. K., Rozgonyi, G. A., Shank, C. V. (Mat. Res. Soc., Pittsburgh, PA 1985). pp. 329.Google Scholar
25. Sedgwick, T. O.. Michel, A. E., Deline, V. R., Cohen, S. A., and Lasky, J. B., J. Appl. Phys., 63, 1452 (1988).CrossRefGoogle Scholar
26. Seidel, T. E., IEEE Electron Device Lett., EDL–4, 353 (1983).CrossRefGoogle Scholar
27. Angelucci, R., Negrini, P. and Solmi, S., Applied Phys. Lett., 49, 1468 (1986).CrossRefGoogle Scholar
28. Drowley, C. I., Adkission, J., Peters, D. and Chiang, S., Mat. Res. Soc. Symp. Proc., 35, 375 (1985).CrossRefGoogle Scholar
29. Servidori, M., Sourek, Z., and Solmi, S., J. Appl. Phys., 62, 1723 (1987).Google Scholar
30. Kim, Y., Massoud, H. Z., Chevacharoenkul, S., and Fair, R. B. in Semiconductor Silicon 1990 edited by Huff, H. R., Barraclough, K. G., and Chikawa, J. (Ecectrochem. Soc.90–7, Pennington, N.J., 1990), pp. 437.Google Scholar
31. Sedwick, T. O., Nucl. Instr. and Methods Phys. Res., B37/38, 760 (1989).CrossRefGoogle Scholar
32. Ozturk, M. C., Wortman, J. J., Osburn, C. M., Ajmera, A., Rozgonyi, G. A., Frey, E., Chu, W. K. and Lee, C., IEEE Trans. Electron Devices, 35, 659 (1988).Google Scholar
33. Michel, A. E. in Process Physics and Modeling in Semiconductor Technology. edited by Srinivasan, G. R., Plummer, J. D. and Pantelides, S. T. (Electrochem Soc. 91–4, Pennington, NJ, 1991) pp. 242.Google Scholar
34. Fair, R. B., IEEE Trans. Electron Dev., 37, 2237 (1990).CrossRefGoogle Scholar
35. Hong, S. N., Ruggles, G. A., Wortman, J. J. and Ozturk, M.C., IEEE Trans. Electron Devices, 38, 476 (1991).CrossRefGoogle Scholar
36. Solmi, S., Baruffaldi, F. and Canteri, R., J. Appl. Phys., 69, 2135 (1991).CrossRefGoogle Scholar
37. McMahon, R. A., Hasko, D. G., Ahmed, H., Stoble, W. M., and Godfrey, D. J. in Energy Beam-Solid Interactions and Transient Thermal Processing 1984 edited by Biegelsen, D. K., Rozgonyi, G. A., and Shank, C. V. (Mat. Res. Soc. 35, Pittsburgh, PA, 1984) pp. 347.Google Scholar
38. Fair, R. B., ibid, pp. 381.Google Scholar
39. Tannenbaum, E., Sol. State Electron., 2, 123 (1961).CrossRefGoogle Scholar
40. Finetti, M., Negrini, P., Solmi, S., and Nobile, D., J. Electrochem. Soc., 128, 1313 (1981).CrossRefGoogle Scholar
41. Nobili, D., Armigliato, A., Finetti, M., Solmi, S., J. Appl. Phys., 53, 1484 (1982).CrossRefGoogle Scholar
42. Kendall, D. L., Vries, D. B. De in Semiconductor Silicon edited by Haberecht, R. R. and Kern, E. L. (Electrochem. Soc., New York, 1969) pp. 97.Google Scholar
43. Fair, R. B. and Tsai, J. C. C., J. Electrochem. Soc., 122, 1689 (1975).Google Scholar
44. Kato, J. and Ono, Y., J. Electrochem. Soc., 132, 1730 (1985).CrossRefGoogle Scholar
45. Cembali, F., Galloni, R., and Zignagi, Z., Rad. Eff., 26,161 (1975).CrossRefGoogle Scholar
46. Miyao, M., Yoshihiro, N., Tokuyama, T., Mitsuishi, T., J. Appl. Phys., 49, 2573 (1978).CrossRefGoogle Scholar
47. Sadana, D. K., Washburn, J., and Magee, C. W., J. Appl. Phys., 54, 3479 (1983).Google Scholar
48. Nobili, D. in Aggregation Phenomena of Point Defects in Silicon, edited by Sirtl, E. and Goorissen, J. (Electrchem Soc. 83–4, Pennington, NJ, 1982) pp. 189.Google Scholar
49. Orlowski, M., Subrahmanyan, R., Huffman, G., J. Appl. Phys., 71,164 (1992).Google Scholar
50. Tsai, M. Y., Morehead, F. F., Baglin, J. E. E., and Michel, A. E., J. Appl. Phys., 51, 3230 (1980).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 5 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Junction Formation in Silicon by Rapid Thermal Annealing
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Junction Formation in Silicon by Rapid Thermal Annealing
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Junction Formation in Silicon by Rapid Thermal Annealing
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *