Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-dxfhg Total loading time: 0.289 Render date: 2021-03-06T11:59:52.120Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Integration of a Polymer Etch Stop Layer in a Porous Low K MLM Structure

Published online by Cambridge University Press:  01 February 2011

Gregory C. Smith
Affiliation:
SEMATECH, Austin Texas
Neil Henis
Affiliation:
SEMATECH, Austin Texas
Richard McGowan
Affiliation:
SEMATECH, Austin Texas
Brian White
Affiliation:
Advanced Micro Devices Assignee at SEMATECH, Austin Texas
Matthias Kraatz
Affiliation:
SEMATECH, Austin Texas University of Texas, Austin, Texas
Sri Satyanarayana
Affiliation:
SEMATECH, Austin Texas
Sharath Hosali
Affiliation:
SEMATECH, Austin Texas
Youfan Liu
Affiliation:
Intel Assignee at SEMATECH, Austin, Texas
Klaus Pfeifer
Affiliation:
SEMATECH, Austin Texas
Get access

Abstract

Two level metal structures were fabricated to test the efficacy of using an organic low K etch stop layer (OESL) in order to lower the effective dielectric constant for intralayer capacitance. The organic etch stop layer's intrinsic capacitance of 3.3 compares with that of silicon carbide (∼ 5) which constitutes the control of the experiment. This reduction represents a reduction of effective dielectric constant for the stack of about 10% to about 3.0. The process was optimized so as to achieve yield of via chains of a million 130 nm diameter vias, and effective K was measured. The target of 3.0 was achieved using this process. Interpenetration of the organic etch stop with the MSQ porous low K material was observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Furukawa, Y., Kokubo, T., Struyf, H., Maenhoudt, M., Vanhaelemeersh, S., Gravesteijn, D., “Dual Damascene Patterning for Full Spin-on Stack of Porous Low-K Material”, (Proc. IEEE 2002 IITC), pp.4547.Google Scholar
2. McGowan, R., Wang, D., Wolf, P. J., “Integration of an Ultra Low-K Dielectric an a 300 mm 130 nm Trench First Dual Damascene Etch Process”, AVS 51st International Symposium, November, 2004.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 10 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 6th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Integration of a Polymer Etch Stop Layer in a Porous Low K MLM Structure
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Integration of a Polymer Etch Stop Layer in a Porous Low K MLM Structure
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Integration of a Polymer Etch Stop Layer in a Porous Low K MLM Structure
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *