Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-x5fd4 Total loading time: 0.241 Render date: 2021-02-26T22:18:41.559Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Integrated Nonreciprocal Devices for Application in Optical Communication Systems

Published online by Cambridge University Press:  10 February 2011

T. Shintaku
Affiliation:
NTT Opto-electronics Laboratories, Tokai, Ibaraki, 319-1193 JAPAN, shintaku@iba.iecl.ntt.co.jp
N. Sugimoto
Affiliation:
NTT Opto-electronics Laboratories, Tokai, Ibaraki, 319-1193, JAPAN
A. Tate
Affiliation:
NTT Opto-electronics Laboratories, Tokai, Ibaraki, 319-1193, JAPAN
E. Kubota
Affiliation:
NTT Opto-electronics Laboratories, Tokai, Ibaraki, 319-1193, JAPAN
H. Kozawaguchi
Affiliation:
NTT Opto-electronics Laboratories, Tokai, Ibaraki, 319-1193, JAPAN
Y. Katoh
Affiliation:
NTT Opto-electronics Laboratories, Tokai, Ibaraki, 319-1193, JAPAN
Corresponding
Get access

Abstract

We describe our recently developed integrated isolators. Their structure is simple, in that it consists solely of a single-mode channel magneto-optic waveguide. The operating principle is that a backward fundamental TM mode wave is converted to higher-order or radiation TE modes while a forward fundamental TM mode wave propagates with no mode conversion. These isolators are realized using a single-mode rib channel waveguide in Ce-substituted yttrium iron garnet which has a very large Faraday rotation. We obtain 13-27 dB isolation around a wavelength of 1.55 μm. We also review our recent study on a hybrid-integrated polarization-independent optical circulator based on a nonreciprocal Mach-Zehnder interferometer which does not need a polarization-beam splitter. We obtain 14.1-23.7 dB isolation at λ = 1.55 μm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Castéra, J. P. and Hepner, G., Appl. Opt. 16, 2031 (1977).10.1364/AO.16.002031CrossRefGoogle Scholar
2. Kirsch, S. T., Biolsi, W. A., Blank, S. L., Tien, P. K., Martin, R. J., Bridenbaugh, P. M., and Grabbe, P., J. Appl. Phys. 52, 3190 (1981).10.1063/1.329186CrossRefGoogle Scholar
3. Okamura, Y., Inuzuka, H., Kikuchi, T. and Yamamoto, S., IEEE J. Lightwave Tech. 4, 711 (1986).10.1109/JLT.1986.1074831CrossRefGoogle Scholar
4. Taki, K. and Miyazaki, Y., Trans. IECE Jpn. E71, 161 (1988).Google Scholar
5. Ando, K., Okoshi, T., and Koshizuka, N., Appl. Phys. Lett. 53, 4 (1988).10.1063/1.100565CrossRefGoogle Scholar
6. Mizumoto, T., Chihara, H., Tokui, N., and Naito, Y., Third Optoelectronics Conference (OEC'90) Technical Digest, Makuhari Messe, Japan, 113B4–5 (1990).Google Scholar
7. Ando, K., Proc. SPIE 1126, 58 (1989).10.1117/12.961381CrossRefGoogle Scholar
8. Shintaku, T. and Uno, T., J. Appl. Phys. 76, 8155 (1994).10.1063/1.357867CrossRefGoogle Scholar
9. Shintaku, T., Appl. Phys. Lett. 66, 2789 (1995).CrossRefGoogle Scholar
10. Shintaku, T., to appear in Appl. Phys. Lett.Google Scholar
11. Gomi, M., Satoh, K., and Abe, M., Jpn. J. Appl. Phys. 27, L1536 (1988).10.1143/JJAP.27.L1536CrossRefGoogle Scholar
12. Shintaku, T. and Uno, T., Jpn. J. Appl. Phys. 35, 4689 (1996).CrossRefGoogle Scholar
13. Shintaku, T., Tate, A, and Mino, S., Appl. Phys. Lett. 71, 1640 (1997).CrossRefGoogle Scholar
14. Shintaku, T., Uno, T., and Kobayashi, M., J. Appl. Phys. 74, 4877 (1993).CrossRefGoogle Scholar
15. Shintaku, T., Sugimoto, N., Shimokozono, M., Tate, A., Kubota, E., Kozawaguchi, H., Ishii, M. and Inoue, Y., Proc. IOOC/ECOC'97 5, 57 (1997).Google Scholar
16. Marcatili, E. A. J., Bell Syst. Tech. J. 48, 2071 (1969).10.1002/j.1538-7305.1969.tb01166.xCrossRefGoogle Scholar
17. Yamamoto, S. and Makimoto, T., J. Appl. Phys. 45, 882 (1974).10.1063/1.1663332CrossRefGoogle Scholar
18. Yamamoto, S., Koyamada, Y, and Makimoto, T., J. Appl. Phys. 43, 5090 (1972).CrossRefGoogle Scholar
19. Kawakami, S., Appl. Opt. 22, 2426 (1983).10.1364/AO.22.002426CrossRefGoogle Scholar
20. Terui, H., Tate, A., Yamada, Y., Sugimoto, N., Katoh, Y., Sugita, A., Shibukawa, A. and Inoue, Y., Ando, S. and Sawada, T., Proc. ECOC '94, Firenze, 213 (1994).Google Scholar
21. Jinguji, K., Takato, N., Hida, Y., Kitoh, T. and Kawachi, M., J. Lightwave. Technol. 14, 2301 (1996).10.1109/50.541222CrossRefGoogle Scholar
22. Ando, S., Sawada, T. and Inoue, Y., Electron Lett. 22, 2143 (1993).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 1 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Integrated Nonreciprocal Devices for Application in Optical Communication Systems
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Integrated Nonreciprocal Devices for Application in Optical Communication Systems
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Integrated Nonreciprocal Devices for Application in Optical Communication Systems
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *