Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T16:08:38.788Z Has data issue: false hasContentIssue false

In-situ TEM-STM Observations of SWCNT Ropes/tubular Transformations

Published online by Cambridge University Press:  31 January 2011

Franscisco Solá
Affiliation:
francisco.sola-lopez@nasa.gov, NASA Glenn Research Center, Structures and Materials Division, Cleveland, Ohio, United States
Marisabel Lebrón-Colón
Affiliation:
Marisabel.Lebron-Colon-1@nasa.gov, NASA Glenn Research Center, Polymers Branch, Cleveland, Ohio, United States
F. Ferreira
Affiliation:
ferreira@mail.utexas.edu, Univeristy of Texas, Austin, Texas, United States
Luis F. Fonseca
Affiliation:
luis.fonseca@upr.eduluis.upr@gmail.com, University of Puerto Rico, Physics, San Juan, Puerto Rico
Michael A. Meador
Affiliation:
Michael.A.Meador@grc.nasa.gov, NASA Glenn Research Center, Polymers Branch, Cleveland, Ohio, United States
Carlos J. Marín
Affiliation:
jcmarin@uprrp.edu, University of Puerto Rico, Mayaguez, Puerto Rico
Get access

Abstract

Single-walled carbon nanotubes (SWCNTs) prepared by the HiPco process were purified using a modified gas phase purification technique. A TEM-STM holder was used to study the morphological changes of SWCNT ropes as a function of applied voltage. Kink formation, buckling behavior, tubular transformation and eventual breakdown of the system were observed. The tubular formation was attributed to a transformation from SWCNT ropes to multi-walled carbon nanotube (MWCNT) structures. It is likely mediated by the patching and tearing mechanism which is promoted primarily by the mobile vacancies generated due to current-induced heating and, to some extent, by electron irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, S., Nature 354, 56 (1991).Google Scholar
2. Carbon Nanotubes: Synthesis, Structure, Properties and Applications, ed. Dresselhaus, M.S., Dresselhaus, G. and Avouris, P. (Springer, Heidelberg, 2001).Google Scholar
3. Ferreira, P.J., Mitsuishi, K. and Stach, E.A., MRS Bulletin 33, 8390 (2008).Google Scholar
4. Huang, J.Y., Chen, S., Wang, Z.Q., Kempa, K., Wang, Y.M., Jo, S.H., Chen, G., Dresselhaus, M.S. and Ren, Z.F., Nature 419, 281 (2006).Google Scholar
5. Jin, C., Suenaga, K. and Iijima, S., Nature Nanotechnology 3, 17 (2008).Google Scholar
6. Jensen, K., Girit, Ç., Mickelson, W. and Zettl, A., Phys. Rev. Lett. 96, 215503 (2006).Google Scholar
7. Jin, C., Suenaga, K. and Iijima, S., Nano Lett. 8, 1127 (2008).Google Scholar
8. Svensson, K., Olin, H., and Olsson, E., Phys. Rev. Lett. 93, 145901–1 (2004).Google Scholar
9. Golberg, D., P.Costa, M.F.J., Mitome, M. and Bando, Y., Nano Res. 1, 166 (2008).Google Scholar
10. Solá, F., Biaggi-Labiosa, A., Fonseca, L.F., Resto, O., Lebrón-Colón, M. and Meador, M.A., Nanoscale Res. Lett. 4, 431 (2009).Google Scholar
11. Aslam, Z., Abraham, M., Brown, A., Rand, B. and Brydson, R., J. Microscopy 231, 144 (2008).Google Scholar
12. Yi, W., Malkovskiy, A., Chu, Q., Sokolov, A.P., Lebrón-Colón, M., Meador, M.A. and Pang, Y., J. Phys. Chem. B112, 12263 (2008).Google Scholar
13. Marín, C., Serrano, M.D., Yao, N. and Ostrogorsky, A.G., Nanotechnology 13, 218 (2002).Google Scholar
14. Nikolaev, P., Bronikowski, M. J., Bradley, R. K., Rohmund, F., Colbert, D.T., Smith, K.A. and Smalley, R.E., Chem. Phys. Lett. 313, 91 (1999).Google Scholar
15.PLambin, h., Loiseau, A., Culot, C. and Biró, L.P., Carbon 40, 1635 (2002).Google Scholar
16. Wheel/Rail Interface Handbook, ed. Lewis, R. and Olofsson, U. (CRC Publisher, 2009).Google Scholar
17. Li, J. and Banhart, F., Nano Lett. 4, 1143 (2004).Google Scholar
18. Cao, G. and Chen, X., Phys. Rev. B73, 155435 (2006).Google Scholar
19. López, María J., Rubio, A., Alonso, J. A., Lefrant, S., Méténier, K. and Bonnamy, S., Phys. Rev. Lett. 89, 255501–1 (2002).Google Scholar
20. Smith, B.W. and Luzzi, D.E., J. Appl. Phys. 90, 3509 (2001).Google Scholar
21. Kis, A., Csányi, G., Salvetat, J., Lee, T., Couteau, E., Kulik, A.J., Benoit, W., Brugger, J. and Forró, L., Nature Mater. 3, 153 (2004).Google Scholar
22. Marques, M.A.L., Troiani, H.E., Yoshida, M. M., Yacaman, M. J., Rubio, A., Nano Lett. 4, 811 (2004).Google Scholar
23. Hadded, F.O. and Durkan, C., Appl. Phys. Lett. 91, 123120 (2007).Google Scholar
24. Nihei, M., Kawabata, A., Kondo, D., Horibe, M., Sato, S., and Awano, Y., Jpn. J. Appl. Phys. 44, 1626 (2005).Google Scholar
25. Dong, L., Youkey, S., Bush, J., Jiao, J., Dubin, V.M. and Chebiam, R.V., J. Appl. Phys. 101, 024320 (2007).Google Scholar