Skip to main content Accessibility help
×
Home

Influence of Core-Shell Architecture Parameters on Thermal Conductivity of Si-Ge Nanowires

Published online by Cambridge University Press:  13 March 2015


Sevil Sarikurt
Affiliation:
Department of Physics, Faculty of Science, Dokuz Eylul University, Izmir, 35390, TURKEY Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA
Cem Sevik
Affiliation:
Department of Mechanical Engineering, Faculty of Engineering, Anadolu University, Eskisehir, 26555, TURKEY
Alper Kinaci
Affiliation:
Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA Argonne National Laboratory, Argonne, IL 60439, USA
Justin B. Haskins
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035, USA Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122
Tahir Cagin
Affiliation:
Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122

Abstract

In this work, we investigate the influence of the core-shell architecture on nanowire (1D) thermal conductivity targeting to evaluate its validity as a strategy to achieve a better thermoelectric performance. To obtain the thermal conductivity values, equilibrium molecular dynamic simulations is applied to Si and Ge systems that are chosen to form core-shell nanostructures. To explore the parameter space, we have calculated thermal conductivity values of the Si-core/Ge-shell and Ge-core/Si-shell nanowires at different temperatures for different cross-sectional sizes and different core contents. Our results indicate that (1) increasing the cross-sectional area of pristine Si and pristine Ge nanowire increases the thermal conductivity (2) increasing the Ge core size in the Si-core/Ge-shell structure results in a decrease in the thermal conductivity values at 300 K (3) thermal conductivity of the Si-core/Ge-shell nanowires demonstrates a minima at specific core size (4) no significant variation in the thermal conductivity observed in nanowires for temperature values larger than 300 K (5) the predicted thermal conductivity around 10 W m −1 K −1 for the Si and Ge core-shell architecture is still high to get desired ZT values for thermoelectric applications. On the other hand, significant decrease in thermal conductivity with respect to bulk thermal conductivity of materials and pristine nanowires proves that employing core–shell architectures for other possible thermoelectric material candidates would serve valuable opportunities to achieve a better thermoelectric performance.


Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below.

References

Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B, 47(24), 1663116634 (1993).CrossRef
Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B, 47, 16631(R) (1993).CrossRef
Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B, 47, 12727 (1993).CrossRef
Li, D., Wu, Y., Fan, R., Yang, P. and Majumdar, A., Appl. Phys. Lett., 83(15), 31863188 (2003).CrossRef
Minnich, A. J., Dresselhaus, M. S., Ren, Z. F. and Chen, G., Energy Environ. Sci., 2, 466479 (2009).CrossRef
Collins, P. G., Bando, H. and Zettl, A., Nanotechnology, 9(3), 153 (1998).CrossRef
Cui, Y. and Lieber, C. M., Science, 291(5505), 851853 (2001).CrossRef
Dresselhaus, M.S., Lin, Y.-M., Cronin, S.B., Rabin, O., Black, M.R., Dresselhaus, G. and Koga, T., Semiconductors and Semimetals, 71, 1121 (2001).CrossRef
Yang, P., Wu, Y. and Fan, R., International Journal of Nanoscience, 1(01), 139 (2002).CrossRef
Boukai, A. I., Bunimovich, Y., Tahir-Khelil, J., Yu, J. K., Goddard, W. A. III and Heath, J. R., Nature, 451, 168171 (2008).Google Scholar
Vining, C. B., J. Appl. Phys., 69(1), 331341 (1991).CrossRef
Lu, W., Xiang, J., Timko, B. P., Wu, Y. and Lieber, C. M., Proc. Natl. Acad. Sci. U.S.A, 102(29), 1004610051 (2005).CrossRef
Xiang, J., Lu, W., Hu, Y., Wu, Y., Yan, H. and Lieber, C. M., Nature, 441(7092), 489493 (2006).CrossRef
Li, D., Wu, Y., Kim, P., Shi, L., Yang, P. and Majumdar, A, Appl. Phys. Lett., 83(14), 29342936 (2003).CrossRef
Wingert, M. C., Chen, Z. C. Y., Dechaumphai, E., Moon, J., Kim, J. H., Xiang, J., Chen, R. K., Nano Letter, 11(12), 55075513 (2011).CrossRef
Haskins, J. B., Kinaci, A. and Çağın, T., Nanotechnology, 22, 155701 (2011).CrossRef
Volz, S. G. and Chen, G., Appl. Phys. Lett., 75(14), 20562058 (1999).CrossRef
Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids, (Oxford University Press, Oxford, UK, 1987).Google Scholar
Rapaport, D. C., The Art of Molecular Dynamics Simulation, (Cambridge University Press, Cambridge, UK, 2004).CrossRefGoogle Scholar
Donadio, D. and Galli, G., Nano Letters, 10(3), 847851 (2010).CrossRef
Tersoff, J., Phys. Rev. B, 39(8), 55665568 (1989).CrossRef
Hu, M., Giapis, K. P., Goicochea, J. V., Zhang, X and Poulikakos, D., Nano Letters, 11(2), 618623 (2011).CrossRef
Hu, M., Zhang, X., Giapis, K. P. and Poulikakos, D., Phys. Rev. B, 84(8), 085442 (2011).CrossRef
Kubo, R., J. Phys. Soc. JPN, 12(6), 570586 (1957).CrossRef
Zwanzig, R., Annu. Rev. Phys. Chem., 16(1), 67102 (1965).CrossRef
Helfand, E., Phys. Rev., 119(1), 19 (1960).CrossRef
Kinaci, A., Haskins, J. B. and Çağın, T., J. Chem. Phys., 137(1), 014106 (2012).CrossRef
Haskins, J. B., Kinaci, A., Sevik, C. and Çağın, T., J. Chem. Phys., 140(24), 244112 (2014).CrossRef
Sevik, C., Kinaci, A., Haskins, J. B. and Çağın, T., Phys. Rev. B, 84(8), 085409 (2011).CrossRef
Kinaci, A., Haskins, J. B., Sevik, C., and Çağın, T., Phys. Rev. B, 86(11), 115410 (2012).CrossRef
Haskins, J., Kinaci, A., Sevik, C., Sevinçli, H., Cuniberti, G., and Çağın, T., ACS Nano, 5(5), 37793787 (2011).CrossRef
Sevik, C., Sevinçli, H., Cuniberti, G., and Çağın, T., Nano Letters, 11(11), 49714977 (2011).CrossRef
Plimpton, S., J. Comput. Phys., 117(1), 119 (1995).CrossRef
He, Y., Savic, I., Donadio, D. and Galli, G., Phys. Chem. Chem. Phys., 14, 1620916222 (2012).CrossRef
Che, J., Çağın, T., Goddard, W., Nanotechnology, 11, 6569 (2000).CrossRef
Glassbrenner, C. J. and Slack, G. A., Phys. Rev., 134, A1058A1069 (1964).CrossRef
Stuckes, A. D., Philosophical Magazine, 49(5), 8499 (1960).CrossRef
Shanks, H. R., Maycock, P. D., Sidles, P. H. and Danielson, G. C., Phys. Rev., 130(5), 17431748 (1963).CrossRef
Joffe, A. F., Can. J. Phys., 34(12A), 13421355 (1956).CrossRef
Abeles, B., Beers, D. S., Cody, G. D. and Dismukes, J. P., Phys. Rev., 125, 4446 (1962).sCrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 13 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-lltvg Total loading time: 0.312 Render date: 2020-12-05T15:52:28.963Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Dec 05 2020 15:01:36 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Influence of Core-Shell Architecture Parameters on Thermal Conductivity of Si-Ge Nanowires
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Influence of Core-Shell Architecture Parameters on Thermal Conductivity of Si-Ge Nanowires
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Influence of Core-Shell Architecture Parameters on Thermal Conductivity of Si-Ge Nanowires
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *