Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-xbbwl Total loading time: 0.207 Render date: 2021-03-03T18:38:56.653Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Incorporation of High Concentration Luminescent Er Centers in Si and Porous Si by Electroplating

Published online by Cambridge University Press:  10 February 2011

Chi Sheng
Affiliation:
Surface Physics Laboratory, Fudan University, Shanghai 200433, China, (86)-(21)-65493232
Yongming Cai
Affiliation:
Surface Physics Laboratory, Fudan University, Shanghai 200433, China, (86)-(21)-65493232
Dawei Gong
Affiliation:
Surface Physics Laboratory, Fudan University, Shanghai 200433, China, (86)-(21)-65493232
Darning Huang
Affiliation:
Surface Physics Laboratory, Fudan University, Shanghai 200433, China, (86)-(21)-65493232
Xiaohan Liu
Affiliation:
Surface Physics Laboratory, Fudan University, Shanghai 200433, China, (86)-(21)-65493232
Xun Wang
Affiliation:
Surface Physics Laboratory, Fudan University, Shanghai 200433, China, (86)-(21)-65493232
Get access

Abstract

It is found that Er could only be deposited on a Si cathode by electrolysis of near neutral ErCl3 electrolyte with a large current density. The deposited Er hydrolytic layer reacts with Si at 1200 °C to form the activated Er centers that emit a 1.533 μm photoluminescence peak at room temperature. By applying this process to porous Si, an apparent doping concentration of Er larger than 1019/cm3 in the whole porous Si layer and a strong PL intensity with little temperature quenching are achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Ennen, H., Schneider, J., Pomrenke, G., and Axmann, A., Appl. Phys. Lett. 43, 943 (1983).CrossRefGoogle Scholar
2. Ennen, H., Pomrenke, G., Axmann, A., Eisele, K., Haydl, W., and Schneider, J., Appl. Phys. Lett., 46, 381 (1985).CrossRefGoogle Scholar
3. Michel, J., Benton, J. L., Ferrante, R. I., Jacobson, D. C., Eaglesham, D. J., Fitzgerald, E. A., Xie, Y. H., Poate, J. M., and Kimerling, L. C., J. Appl. Phys. 70, 2672 (1991).CrossRefGoogle Scholar
4. Polman, A., Custer, J. S., Snoeks, E., and N van den Hoven, G., Nucl. Instr,and Meth B80/81, 653 (1993)CrossRefGoogle Scholar
5. Adler, D. C., Jacobson, D. C., Eaglesham, D. J., Marcus, M. A., Benton, J. L., Poate, J. M., and Citrin, P. H., Appl. Phys. Lett. 61, 2181 (1992).CrossRefGoogle Scholar
6. Coffa, S., Priolo, F., Franzo, G., Bellani, V., Carnera, A., and Spinella, C., Phys Rev. B48, 11782 (1993).CrossRefGoogle Scholar
7. Coffa, S., Franzo, G., Priolo, F., Polman, A., and Serna, R., Phys. Rev. B49, 16313 (1994).CrossRefGoogle Scholar
8. Ren, F. Y. G., Michel, J., Sun-Paduano, Q., Zheng, B., Kitagawa, H., Jacobson, D. C., Poate, J. M., and Kimerling, L. C., MatRes. Soc. Symp. Proc. 301, 87 (1993).CrossRefGoogle Scholar
9. Franzo, G., Priolo, F, Coffa, S., Polman, A., and Carnera, A., Appl. Phys. Lett. 64, 2235 (1994).CrossRefGoogle Scholar
10. Takahei, K., and Taguchi, A., Mat. Sci. Forum 83–87, 641 (1992).CrossRefGoogle Scholar
11 Favennec, P. N., Haridon, H, Moutonnet, D., Salvi, M., and Gauneau, M., Jpn. J. Appl. Phys. 29, L524, (1990).CrossRefGoogle Scholar
12. Tang, Y. S., Heasman, K. C., Gillin, W. P., and Sealy, B. J., Appl. Phys. Lett. 55, 432 (1989).CrossRefGoogle Scholar
13. Moutonnet, D., I'Haridon, H., Favennec, P. N., Salvi, M., Gauneau, M., d'avitaya, F. Arnaud, and Chroboczek, J., Mat. Sci. Eng. B4, 75 (1989).CrossRefGoogle Scholar
14. Polman, A., van den Hoven, G. N., Custer, J. S., Shin, J. H., Serna, R., and Alkemade, P. F. A., J. Appl. Phys. 77, 1256 (1995).CrossRefGoogle Scholar
15. Franzo, G., Priolo, F., Coffa, S., Polman, A., and Carnera, A., Nucl. Instru. and Meth. B96, 374 (1995).CrossRefGoogle Scholar
16. Lombardo, S., Campisano, S. U., van den Hoven, G. N., and Polman, A., Nucl. Instru. and Meth. B96, 378 (1995).CrossRefGoogle Scholar
17. Polman, A., Custer, J. S., Snoeks, E., and vandenHoven, G. N., Appl. Phys. Lett. 62, 507 (1993)CrossRefGoogle Scholar
18. Coffa, S., Franzo, G., Priolo, F., Polman, A., and Serna, R., Phys. Rev. B49, 16313 (1994)CrossRefGoogle Scholar
19. Polman, A., Jacobson, D. C., Eaglesham, D. J., Kistler, R. C., and Poate, J. M., J. Appl. Phys. 70, 3778 (1991).CrossRefGoogle Scholar
20. Lombardo, A., Campisano, S. U., and Baroetto, F., Phys. Rev. B47, 13561 (1993).CrossRefGoogle Scholar
21. Shin, J. H., Van den Hoven, G. N., and Polman, A., Appl. Phys. Lett. 66, 2379 (1995).CrossRefGoogle Scholar
22. Kimura, T., Yokoi, A., Horiguchi, H., Saito, R.,Ikoma, T., and Sato, A., Appl. Phys. Lett. 65, 983 (1994).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 2 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 3rd March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Incorporation of High Concentration Luminescent Er Centers in Si and Porous Si by Electroplating
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Incorporation of High Concentration Luminescent Er Centers in Si and Porous Si by Electroplating
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Incorporation of High Concentration Luminescent Er Centers in Si and Porous Si by Electroplating
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *