Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-z4vvc Total loading time: 0.266 Render date: 2021-02-27T10:08:09.601Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

In situ X-ray Reflectivity Study of Oxidation Kinetics in Iron and Stainless steel

Published online by Cambridge University Press:  01 February 2011

D. H. Kim
Affiliation:
Department of Materials Science and Engineering, Gwangju Institute of Science & Technology (K-JIST), Gwangju 500–712, Republic of Korea
S. S. Kim
Affiliation:
Department of Materials Science and Engineering, Gwangju Institute of Science & Technology (K-JIST), Gwangju 500–712, Republic of Korea
H. H. Lee
Affiliation:
Department of Materials Science and Engineering, Gwangju Institute of Science & Technology (K-JIST), Gwangju 500–712, Republic of Korea
H. W. Jang
Affiliation:
Department of Materials Science and Engineering, Gwangju Institute of Science & Technology (K-JIST), Gwangju 500–712, Republic of Korea
J. W. Kim
Affiliation:
Department of Materials Science and Engineering, Gwangju Institute of Science & Technology (K-JIST), Gwangju 500–712, Republic of Korea
M. Tang
Affiliation:
Synchrotron Radiation Research Center, Hsinchu, Taiwan 300, Taiwan
K. S. Liang
Affiliation:
Synchrotron Radiation Research Center, Hsinchu, Taiwan 300, Taiwan
S. K. Sinha
Affiliation:
Department of Physics, University of California at San Diego, CA 92093, USA
D. Y. Noh
Affiliation:
Department of Materials Science and Engineering, Gwangju Institute of Science & Technology (K-JIST), Gwangju 500–712, Republic of Korea
Get access

Abstract

In situ specular x-ray reflectivity was applied to study the growth kinetics of passive oxide films on iron and stainless steel substrates in pH 8.4 borate buffer solution. Under electrical potential from 0 to 800 mV, the growth rate of oxide films decreases exponentially in thickness following the direct logarithmic growth law predicted in the point defect model. The electric field in the oxide on iron is independent of the applied potentials consistent with the point defect model. In stainless steel, however, the electric field depends strongly on the applied potential indicating that the oxide properties change as the applied potential varies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Cabrera, N. and Mott, N. F., Rep. Prog. Phys. 12, 163 (19481949)CrossRefGoogle Scholar
2. Chao, C. Y., Lin, L. F. and Macdonald, D. D., J. Electrochem. Soc. 128, 1187 (1981)CrossRefGoogle Scholar
3. Zhang, L., Macdonald, D. D., Sikora, E. and Sikora, J., J. Electrochem. Soc. 145, 898 (1998)CrossRefGoogle Scholar
4. Vetter, K. J., Electrochim. Acta 16, 1923 (1971)CrossRefGoogle Scholar
5. Kirchheim, R., Electrochim. Acta 32, 1619 (1987)CrossRefGoogle Scholar
6. Goswami, K. N. and Staehle, R. W., Electrochim. Acta 16, 1895 (1971)CrossRefGoogle Scholar
7. Silverman, S., Cragnolino, G. and Macdonald, D. D., J. Electrochem. Soc. 129, 2419 (1982)CrossRefGoogle Scholar
8. Olsson, C.-O. A., Hamm, D. and Landolt, D., J. Electrochem. Soc. 147, 4093 (2000)CrossRefGoogle Scholar
9. You, H., Melendres, C. A., Nagy, Z., Maroni, V. A., Yun, W. and Yonco, R. M., Phys. Rev. B 45, 11288 (1992)CrossRefGoogle Scholar
10. Büchler, M., Schmuki, P. and Böhni, H., J. Electrochem. Soc. 145, 609 (1998)CrossRefGoogle Scholar
11. Bardwell, J. A., Sproule, G. I. and Graham, M. J., J. Electrochem. Soc. 140, 50 (1993)CrossRefGoogle Scholar
12. Oblonsky, L. J., Ryan, M. P. and Isaacs, H. S., J. Electrochem. Soc. 145, 1922 (1998)CrossRefGoogle Scholar
13. Kim, D. H., Lee, H. H., Kim, S. S., Kang, H. C., Kim, H., Sinha, S. K. and Noh, D. Y., Appl. Phys. Lett. in press.Google Scholar
14. Parratt, L. G., Phys. Rev. 95, 359 (1954)CrossRefGoogle Scholar
15. Tolan, M., X-ray Scattering from Soft-Matter Thin Films, Springer Tracts in Modern Physics Vol. 148 (Springer, Berlin, 1999)Google Scholar
16. Ghez, R., J. Chem. Phys. 58, 1838 (1973)CrossRefGoogle Scholar
17. Macdonald, D. D. and Urquidi-Macdonald, M., J. Electrochem. Soc. 137, 2395 (1990)CrossRefGoogle Scholar
18. Bardwell, J. A., Sproule, G. I., Macdougall, B. R., Graham, M. J., Davenport, A. J. and Isaacs, H. S., J. Electrochem. Soc. 139, 371 (1992)CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 6 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 27th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

In situ X-ray Reflectivity Study of Oxidation Kinetics in Iron and Stainless steel
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

In situ X-ray Reflectivity Study of Oxidation Kinetics in Iron and Stainless steel
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

In situ X-ray Reflectivity Study of Oxidation Kinetics in Iron and Stainless steel
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *