Hostname: page-component-7d684dbfc8-zgpz2 Total loading time: 0 Render date: 2023-09-25T21:20:00.767Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

In Situ TEM Investigation of Abnormal Grain Growth in Nanocrystalline Nickel

Published online by Cambridge University Press:  26 February 2011

David M. Follstaedt
Affiliation:, Sandia National Laboratories, 01111, MS 1056, Albuquerque, NM, 87185-1056, United States, (505) 844-2102, (505) 844-7775
Khalid Hattar
Affiliation:, University of Illinois, Materials Science and Engineering, United States
James A. Knapp
Affiliation:, Sandia National Laboratories, 01111, United States
Ian M. Robertson
Affiliation:, University of Illinois, Materials Science and Engineering, United States
Get access


In situ transmission electron microscopy was used to show that nanocrystalline nickel produced by pulsed-laser deposition undergoes abnormal grain growth at moderate temperatures (225-400°C). The growth rate was found to increase with thickness for the three film thicknesses examined, 50, 80 and 150 nm. The abnormal growth proceeded in an irregular manner: initiation sites and growth direction were unpredictable, and the grains exhibited no preferred orientation. Some abnormal grains show internal boundaries such as twins, while others exhibited lattice misalignments across the grain body. The grains contain many defects, including dislocations, stacking faults and surprisingly, stacking fault tetrahedra. The stacking fault tetrahedra are not a result of quenching nor of electron irradiation-induced lattice displacements; they instead are thought to form from vacancies trapped in the growing grain as it incorporates lower-density material at the high-angle grain boundaries in the nanocrystalline matrix.

Research Article
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1 Becker, E. W., Ehrfeld, W., Hagmann, P., Maner, A., Munchmeyer, D., Microelectron. Engr. 4, 35 (1986).CrossRefGoogle Scholar
2 Knapp, J. A. and Follstaedt, D. M., J. Mater. Res. 19, 218 (2004).CrossRefGoogle Scholar
3 Hugo, R. C., Kung, H., Weertman, J. R., Mitra, R., Knapp, J. A. and Follstaedt, D. M., Acta Mater. 51, 1937 (2003).CrossRefGoogle Scholar
4 Shan, Z., Stach, E. A., Wiezorek, J. M. K., Knapp, J. A., Follstaedt, D. M. and Mao, S. X., Science 305, 654 (2004).CrossRefGoogle Scholar
5 Rios, P. R., Mater. Sci. Forum 204–206, 247 (1996).CrossRefGoogle Scholar
6 Seel, S. C., Carel, R., Mater. Res. Soc. Symp. Proc. 403, 63 (1996).CrossRefGoogle Scholar
7 Thompson, C. V. and Carel, R., Mater. Sci. forum 204–206, 83 (1996).CrossRefGoogle Scholar
8 Watanabe, T., Scr. Metall. 21, 427 (1987).CrossRefGoogle Scholar
9 Nabarro, F. R. N., Scr. Mat. 39, 1681 (1998).CrossRefGoogle Scholar
10 Greiser, J., Mullner, P. and Arzt, E., Acta Mat. 49, 1041 (2001).CrossRefGoogle Scholar
11 Klement, U., Erb, U., El-Sherik, A.M. and Aust, K. T., Mater. Sci. Eng. A 203, 177 (1995).CrossRefGoogle Scholar
12 Gottstein, G., Czubayko, U., Molodov, D. A., Shvindlerman, L. S. and Wunderlich, W., Mater. Sci. Forum 204–206, 99 (1996).CrossRefGoogle Scholar
13 Twardowski, M. and Nuzzo, R.G., Langmuir 18, 5529 (2002).CrossRefGoogle Scholar
14 Hibbard, G. D., McCrea, J. L., Palumbo, G., Aust, K. T. and Erb, U., Scr. Mat. 47, 83 (2002).CrossRefGoogle Scholar
15 This website will be maintained for 2 years following the publication of this manuscript.Google Scholar
16 Williams, D. B. and Carter, C. B., Transmission Electron Microscopy : A Textbook for Materials Science (Plenum Press, New York, 1996). See p. 62 (beam heating), p. 62 (atomic displacements).CrossRefGoogle Scholar
17 Hirth, J. P. and Lothe, J., Theory of Dislocations (Krieger Publishing Co., Malabar, FL, 1992), p. 332 (stacking fault tetrahedral), and p. 839 (stacking fault energies).Google Scholar
18 Sigle, W., Jenkins, M. L. and Hutchison, J. L., Phil. Mag. Lett. 57, 267 (1988).CrossRefGoogle Scholar
19 Kiritani, M., Mater. Chem. Phys. 50, 1333 (1997).CrossRefGoogle Scholar
20 Schumacher, D., Zeit. Angewand. Phyz. 26, 380 (1969).Google Scholar
21 Seeger, A. and Schumacher, D., in Lattice Defects in Quenched Metals, eds. Cotterill, R. M. J, Doyama, M., Jackson, J. J. and Meshii, M. (Academic Press, New York, 1965), p. 54.Google Scholar
22 Van Petegem, S., Torre, F. Dalla, Segers, D. and Van Swygenhoven, H., Scr. Mat. 48, 17 (2003).CrossRefGoogle Scholar
23 Sutton, A. P. and Balluffi, R. W., Interfaces in Crystalline Materials (Oxford Univ. Press, Oxford, 1996).Google Scholar
24 Gregg, J. A., Hattar, K., Lei, C. H. and Robertson, I. M., proceedings of the Materials Research Society, Fall 2005, elsewhere in this volume.Google Scholar
25 Dannenberg, R., Stach, E. A., Groza, J. R. and Dresser, B. J., Thin Solid Films 370, 54 (2000).CrossRefGoogle Scholar