No CrossRef data available.
Published online by Cambridge University Press: 25 February 2011
The formation of high resistivity (> 107 Ω□) regions in GaAs-AlGaAs HBT and SEED structures by oxygen and hydrogen ion implantation is described. Multiple energy implants in the dose range 1013 cm−3 (for O+) and 1015 cm−2 (for H+), followed by annealing around 500°C are necessary to isolate structures ∼2 μm thick. In each case, the evolution of the sheet resistance of the implanted material with annealing is consistent with a reduction in hopping probabilities of trapped carriers between deep level states for temperatures up to ∼600°C, followed by significant annealing of these deep levels. A comparison of the relative thermal stability of O+ or H+ ion implantisolated p+ material is given. Small geometry (2 × 9 μm2) HBTs exhibiting current gain of 44 and cut-off frequency fT as high as 45 GHz are demonstrated using implant isolation.
Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.
* Views captured on Cambridge Core between September 2016 - 7th March 2021. This data will be updated every 24 hours.