Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-9pqtr Total loading time: 0.324 Render date: 2021-04-19T00:23:37.166Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

High-Power Mid-IR Interband Cascade Lasers Based on Type-II Heterostructures

Published online by Cambridge University Press:  10 February 2011

Rui Q. Yang
Affiliation:
U.S. Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783-1197
J. D. Bruno
Affiliation:
U.S. Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783-1197
J. L. Bradshaw
Affiliation:
U.S. Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783-1197
J. T. Pham
Affiliation:
U.S. Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783-1197
D. E. Wortman
Affiliation:
U.S. Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783-1197
Get access

Abstract

The interband cascade lasers (IC) represent a new class of mid-IR light sources, which take advantage of the broken-gap alignment in type-II quantum wells to reuse electrons for sequential photon emissions from serially connected active regions. Here, we describe recent progress in InAs/GaInSb type-II IC lasers at emission wavelengths of 3.8-4 µm; these semiconductor lasers have exhibited significantly higher differential quantum efficiencies and peak powers than previously reported. Also, these lasers were able to operate at temperatures up to 217 K, which is higher than the previous record (182 K) for an IC laser at this wavelength. We observed from several devices at temperatures above 80 K a slope efficiency of ∼800 mW/A per facet, corresponding to a differential external quantum efficiency of /500%. A peak optical output power exceeding 4 W/facet and peak power efficiency of /7% were observed from a device at 80 K. Also, we report the first cw operation of IC lasers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Yang, R. Q., at 7th Inter. Conf on Superlattices, Microstructures and Microdevices, Banff, Canada, August, 1994; Superlattices and Microstructures 17, 77 (1995).Google Scholar
2. Faist, J., Capasso, F., Sivco, D. L., Sirtori, C., Hutchinson, A. L., and Cho, A. Y., Science 264, 553(1994).CrossRefGoogle Scholar
3. Yang, R. Q., Lin, C.-H., Chang, P. C., Murry, S. J., Zhang, D., Pei, S. S., Kurtz, S. R., Chu, S. N. G., and Ren, F., Electron. Lett. 32, 1621 (1996).CrossRefGoogle Scholar
4. Yang, R. Q., Lin, C.-H., Murry, S. J., Pei, S. S., Liu, H. C., Buchanan, M., and Dupont, E., Appl. Phys. Lett. 70, 2013 (1997).CrossRefGoogle Scholar
5. Lin, C.-H., Yang, R. Q., Zhang, D., Murry, S. J., Pei, S. S., Allerma, A. A., and Kurtz, S. R., Electron. Lett. 33, 598 (1997).CrossRefGoogle Scholar
6. Felix, C. L., Bewley, W. W., Vurgaftman, I., Meyer, J. R., Zhang, D., Lin, C.-H., Yang, R. Q., and Pei, S. S., IEEE Photonics Technol. Lett. 9, 1433 (1997).CrossRefGoogle Scholar
7. Yang, R. Q., Yang, B. H., Zhang, D., Lin, C.-H., Murry, S. J., Wu, H., and Pei, S. S., Appl. Phys. Lett. 71, 2409 (1997).CrossRefGoogle Scholar
8. Yang, B. H., Zhang, D., Yang, R. Q., Lin, C.-H., Murry, S. J., and Pei, S. S., Appl. Phys. Lett. 72, 2220 (1998).CrossRefGoogle Scholar
9. Olafsen, L. J., Aifer, E. H., Vurgaftman, I., Bewley, W. W., Felix, C. L., Meyer, J. R., Zhang, D., Lin, C.-H., and Pei, S. S., Appl. Phys. Lett. 72, 2370 (1998).CrossRefGoogle Scholar
10. Yang, R. Q., Microelectronics J. 30, 1043 (1999).CrossRefGoogle Scholar
11. Yang, R. Q., Bruno, J. D., Bradshaw, J. L., Pham, J. T., and Wortman, D. E., Electron. Lett. 35, 1254 (1999).CrossRefGoogle Scholar
12. Bradshaw, J. L., Yang, R. Q., Bruno, J. D., Pham, J. T., and Wortman, D. E., Appl. Phys. Lett. 75, 2362 (1999).CrossRefGoogle Scholar
13. Le, H. Q., Lin, C. H., Murry, S. J., Yang, R. Q., and Pei, S. S., IEEE J. Quantum Electron. 34, 1016 (1998).CrossRefGoogle Scholar
14. Le, H. Q., Turner, G. W., and Ochoa, J. R., IEEE Photon. Technol. Lett. 10, 663 (1998).CrossRefGoogle Scholar
15. Faist, J., Tredicucci, A., Capasso, F., Sirtori, C., Sivco, D. L., Baillargeon, J. N., Hutchinson, A. L., and Cho, A. Y., IEEE J. Quantum Electron. 34, 336 (1998).CrossRefGoogle Scholar
16. Gmachl, C., Tredicucci, A., Capasso, F., Hutchinson, A. L., Sivco, D. L., Baillargeon, J. N., and Cho, A. Y., Appl. Phys. Lett. 72, 3130 (1998).CrossRefGoogle Scholar
17. Meyer, J. R., Vurgaftman, I., Yang, R. Q., and Ram-Mohan, L. R., Electron. Lett. 32, 45 (1996).CrossRefGoogle Scholar
18. Vurgaftman, I., Meyer, J. R., and Ram-Mohan, L. R., IEEE Phot. Tech. Lett. 9, 170 (1997).CrossRefGoogle Scholar
19. Mu, Y.-M. and Yang, R. Q., J. Appl. Phys. 84, 5357 (1998).CrossRefGoogle Scholar
20. Yang, R. Q. and Mu, Y.-M., in In-Plane Semiconductor Lasers III, edited by Choi, H. H. and Zory, P. S. (Proc. SPIE 3628, 1999) pp. 104112.CrossRefGoogle Scholar
21. Yang, R. Q., in Long Wavelength Infrared Emitters Based on Quantum Wells and Superlattices, edited by Helm, M. (Gordon and Breach, Singapore, 1999), Chap. 2.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 4 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 19th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

High-Power Mid-IR Interband Cascade Lasers Based on Type-II Heterostructures
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

High-Power Mid-IR Interband Cascade Lasers Based on Type-II Heterostructures
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

High-Power Mid-IR Interband Cascade Lasers Based on Type-II Heterostructures
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *