Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-11T21:30:56.811Z Has data issue: false hasContentIssue false

High Temperature Functionalization and Surface Modification of Nanodiamond Powders

Published online by Cambridge University Press:  01 February 2011

Vadym N. Mochalin
Affiliation:
kbehler@drexel.edu, Drexel University, Material Science and Engineering, 3141 Chestnut Street, Philadelphia, PA, 19104, United States, 215-895-1934
Sebastian Osswald
Affiliation:
osswald.sebastian@gmx.de, Drexel University, Materials Science and Engineering, 3141 Chestnut Street, Philadelphia, PA, 19104, United States
Cristelle Portet
Affiliation:
cportet@mail.ece.drexel.edu, Drexel University, Materials Science and Engineering, 3141 Chestnut Street, Philadelphia, PA, 19104, United States
Gleb Yushin
Affiliation:
yushin@gatech.edu, Drexel University, Materials Science and Engineering, 3141 Chestnut Street, Philadelphia, PA, 19104, United States
Christopher Hobson
Affiliation:
chobson@drexel.edu, Drexel University, Materials Science and Engineering, 3141 Chestnut Street, Philadelphia, PA, 19104, United States
Mickael Havel
Affiliation:
mickaelhavel@hotmail.com, Drexel University, Materials Science and Engineering, 3141 Chestnut Street, Philadelphia, PA, 19104, United States
Yury Gogotsi
Affiliation:
yg36@drexel.edu, Drexel University, Materials Science and Engineering, 3141 Chestnut Street, Philadelphia, PA, 19104, United States
Get access

Abstract

High temperature annealing in vacuum, air, hydrogen, chlorine, and ammonia are described as a means to change surface chemistry and phase composition of nanodiamond powders of three different grades, which have different sp2/sp3 carbon ratios. The changes in surface chemistry and phase composition of the powders are analyzed using Raman spectroscopy and Fourier Transform Infra Red (FTIR) spectroscopy. Advantages and limitation of high-temperature treatment techniques as well as potential applications of the gas-treated nanodiamond powders are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shenderova, O. A., Gruen, D. M. (eds.), Ultrananocrystalline diamond: Synthesis, Properties, and Applications, (William Andrew Inc., 2006) 600 p.Google Scholar
2. Dolmatov, V. Y. Uspekhi Khimii 76(4), 375397 (2007).Google Scholar
3. Shenderova, O. A., McGuire, G., in Nanomaterials Handbook, edited by Gogotsi, Y. (CRC, 2006), p. 203237.Google Scholar
4. Osswald, S., Yushin, G., Mochalin, V., Kucheyev, S. O., Gogotsi, Y., Journal of the American Chemical Society 128 (35), 1163511642 (2006).10.1021/ja063303nGoogle Scholar
5. Chen, J., Deng, S. Z., Chen, J., Yu, Z. X., Xu, N. S. Applied Physics Letters 74 (24), 36513653 (1999).10.1063/1.123211Google Scholar
6. Eremenko, A. N., Besedina, O. A., Obraztsova, I. I. Russian Journal of Applied Chemistry 77 (12), 19351938 (2004).Google Scholar
7. Aleksenskii, A. E., Baidakova, M. V., Vul', A. Y., Davidov, V. Y., Pevtsova, Y. A. Physics of the Solid State 39 (6), 10071015 (1997).10.1134/1.1129989Google Scholar
8. Kuznetsov, V. L., Zilberberg, I. L., Butenko, Y. V., Chuvilin, A. L., Segall, B. Journal of Applied Physics 86 (2), 863870 (1999).Google Scholar
9. Xu, K., and Xue, Q. Fizika Tverdogo Tela 46 (4), 633634 (2004).Google Scholar
10. Kuznetsov, V. L. and Butenko, Y. V., in Synthesis, Properties and Applications of Ultrananocrystalline diamond, NATO Science Series, II. Mathematics, Physics and Chemistry, 92, p. 199216 (2005), edited by Gruen, D. M., Shenderova, O. A., Vul', A. Ya..Google Scholar
11. Spitsyn, B. V., Davidson, J. L., Gradoboev, M. N., Galushko, T. B., Serebryakova, N. V., Karpukhina, T. A., Kulakova, I. I., Melnik, N. N. Diamond and Related Materials 15 (2-3), 296299 (2006).Google Scholar
12. Papirer, E., Lacroix, R., Donnet, J. B., Nanse, G., Fioux, P. Carbon 33 (1), 6372 (1995).10.1016/0008-6223(94)00111-CGoogle Scholar
13. Spitsyn, B. V., Gradoboev, M. N., Galushko, T. B., Karpukhina, T. A., Serebryakova, N. V., Kulakova, I. I., Melnik, N. N. in Synthesis, Properties and Applications of Ultrananocrystalline diamond, NATO Science Series, II. Mathematics, Physics and Chemistry, 192, p. 241252(2005), edited by Gruen, D. M., Shenderova, O. A., Vul', A. Ya..Google Scholar
14. Liu, Y., Gu, Z. N., Margrave, J. L., Khabashesku, V. N. Chemistry of Materials 16 (20), 39243930 (2004).Google Scholar
15. Cataldo, F. and Koscheev, A. P. Fullerenes, Nanotubes, and Carbon Nanostructures 11 (3), 201218 (2003).Google Scholar
16. Dash, R. K., Nikitin, A., Gogotsi, Y. Microporous and Mesoporous Materials 72 (1-3), 203208 (2004).Google Scholar
17. Kuznetsov, V. L., Chuvilin, A. L., Moroz, E. M., Kolomiichuk, V. N., Shaikhutdinov, S. K., Butenko, Y. V., Malkov, I. Y. Carbon 32 (5), 873882 (1994).Google Scholar
18. Portet, C., Yushin, G., Gogotsi, Y. Carbon 45 (13), 25112518 (2007).Google Scholar
19. Gogotsi, Y. G., Jeon, I. D., McNallan, M. J. Journal of Materials Chemistry 7 (9), 18411848 (1997).10.1039/a701126aGoogle Scholar