Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-l69ms Total loading time: 0.269 Render date: 2022-08-16T04:50:26.447Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

High Optical Quality GaN Nanopillars Grown on (111) Si Using Molecular Beam Epitaxy

Published online by Cambridge University Press:  01 February 2011

Agam Prakash Vajpeyi
Affiliation:
agam@physics.uoc.gr, Institute of Electronic Structure and Laser (IESL), FORTH, Microelectronics Research Center, Herakilon-Crete, Gr, P.O. Box 2208, 71110,, Herakilon, 71110, Greece, +302810394145, +302810394145
G. Tsiakatouras
Affiliation:
tsiakat@physics.uoc.gr, Institute of Electronic Structure and Laser (IESL), FORTH, Microelectronics Research Center, and Department of Physics, University of Crete, Greece, Herakilon, 71110, Greece
A Adikimenakis
Affiliation:
adam@physics.uoc.gr, Institute of Electronic Structure and Laser (IESL), FORTH, Microelectronics Research Center, and Department of Physics, University of Crete, Greece, Herakilon, 71110, Greece
K. Tsagaraki
Affiliation:
ktsag@physics.uoc.gr, Institute of Electronic Structure and Laser (IESL), FORTH, Microelectronics Research Center, and Department of Physics, University of Crete, Greece, Herakilon, 71110, Greece
M Androulidaki
Affiliation:
pyrhnas@physics.uoc.gr, Institute of Electronic Structure and Laser (IESL), FORTH, Microelectronics Research Center, and Department of Physics, University of Crete, Greece, Herakilon, 71110, Greece
Alexandros Georgakilas
Affiliation:
alexandr@physics.uoc.gr, Institute of Electronic Structure and Laser (IESL), FORTH, Microelectronics Research Center, and Department of Physics, University of Crete, Greece, Herakilon, 71110, Greece
Get access

Abstract

The spontaneous growth of GaN nanopillars on (111) Si by plasma assisted molecular beam epitaxy has been investigated. The growth of GaN nanopillars on Si is driven by the lattice mismatch strain energy on Si and the high surface energy of the nitrogen stabilized (0001) GaN surface. A higher growth rate of nanopillars compared to a compact GaN film suggests the diffusion of Ga atoms from the uncovered substrate areas to the nucleated GaN nanopillars. The GaN nanopillars were characterized by field-emission scanning electron microscopy (FE-SEM), photoluminescence, and micro Raman spectroscopy. SEM image revealed that average diameter of GaN nanopillars was in the range of 70-100nm and an average height of 600nm. The photoluminescence (PL) spectra indicate the good emission property of the nanopillars. The low temperate PL spectrum exhibited an emission peak at 3.428eV besides a sharp excitonic peak. PL and Raman spectra indicate that GaN nanopillars are fully relaxed from lattice and thermal strain.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dimoulas, A. Tzanetakis, P. Georgakilas, A. Glembocki, O.J. and Christou, A. J. Appl. Phys. 67, pp. 43894392 (1990)CrossRefGoogle Scholar
2. Georgakilas, A. Dimoulas, A. Christou, A. and Stoemenos, J. J. Mater. Research 7, pp. 21942204 (1992)CrossRefGoogle Scholar
3. Nakamura, S. Fasol, G. and Pearton, S.J. The Blue Laser Diode: The Complete Story, Springer Verlag, 2nd Edition (2000)CrossRefGoogle Scholar
4. Georgakilas, A. Deligeorgis, G. Aperathitis, E. Cengher, D. and Hatzopoulos, Z. Alexe, M. Dragoi, V. Gösele, U. Kyriakis-Bitzaros, E. D., Minoglou, K. and Halkias, G. Appl. Phys. Lett 81, 5099 (2002)CrossRefGoogle Scholar
5. Glas, F. Phys. Rev. B 74, 121302(R) (2006).CrossRefGoogle Scholar
6. Qian, F. Li, Y. Gradecak, S. Wang, D. L. Barrelet, C. J. and Lieber, C. M. Nano Lett. 4, 1975 (2004).CrossRefGoogle Scholar
7. Su, J. et al. Appl. Phys. Lett. 86, 13105 (2005).CrossRefGoogle Scholar
8. Calarco, R. Marso, M. Richter, T. Aykanat, A. I. Meijers, R. Hart, A. V. Stoica, T. and Luth, H. Nano Lett. 5, 981 (2005).CrossRefGoogle Scholar
9. Kim, Y. H. Lee, J. Y. Lee, S. H. Oh, J. E. and Lee, H. S. Appl. Phys. A 80, 1635 (2005).CrossRefGoogle Scholar
10. Jensen, L. E. Björk, M. T., Jeppesen, S. Persson, A. I. Ohlsson, B. J. and Samuelson, L. Nano Lett. 4, 1961 (2004).CrossRefGoogle Scholar
11. Morales, A. M. and Lieber, C. M. Science 279, 208 (1998).CrossRefGoogle Scholar
12. Duan, X. F. and Lieber, C. M. J. Am. Chem. Soc. 122, 188 (2000).CrossRefGoogle Scholar
13. Calarco, R. Meijers, R. J. Debnath, R. K. Stoica, T. Sutter, E. and Luth, H. Nano Lett. 7, 2248 (2007).CrossRefGoogle Scholar
14. Meijers, R. Richter, T. Calarco, R. Stoica, T. Bochem, H. P. Marso, H. and Luth, H, J. Cryst. Growth 289, 381 (2006).CrossRefGoogle Scholar
15. Bertness, K. A. Roshko, A. Sanford, N.A. Barker, J. M. and Davydov, A. V. J. Cryst. Growth 287, 522 (2006).CrossRefGoogle Scholar
16. Park, Y. S. Lee, S. H. Ob, J.E. Park, C. M. and Kang, T. W. J. Cryst. Growth 282 313 (2005).CrossRefGoogle Scholar
17. Iliopoulos, E Adikimenakis, A Dimakis, E Tsagaraki, K Konstantinidis, G Georgakilas, A J. Cryst. Growth 278 426 (2005)CrossRefGoogle Scholar
18. Kayambaki, M Callec, R Constantinidis, G Papavassiliou, Ch., Loechtermann, E Krasny, H Papadakis, N Panayotatos, P Georgakilas, A J. Cryst. Growth 157 300 (1995)CrossRefGoogle Scholar
19. Grandal, J. Sánchez-García, M. A., Calleja, E. Luna, E. and Trampert, A. Appl. Phys. Lett. 91, 021902 (2007).CrossRefGoogle Scholar
20. Calleja, E. Sanchez-Garcõa, M.A., Calle, F. Naranjo, F.B. Munoz, E. Jahn, U. Ploog, K. Sanchez, J. Calleja, J.M. Saarinen, K. Hautojarvi, P. Mat. Sci. Eng. B 82 (2001)Google Scholar
21. Chen, Hung-Ying, Lin, Hon-Way, Shen, Chang-Hong, and Gwo, Shangjr, Appl. Phys. Lett. 89, 243105, (2006)CrossRefGoogle Scholar
22. Calleja, E. Sánchez-García, M. A., Sánchez, F. J., Calle, F. Naranjo, F. B. Muñoz, E., Jahn, U. and Ploog, K. Phys. Rev. B 62, 16826 (2000)CrossRefGoogle Scholar
23. Wang, X Sun, X Fairchild, M Hersee, S.D., Appl. Phys. Lett. 89, 233115 (2006)CrossRefGoogle Scholar
24. Hsu, Wei-Tse, Lin, Kuo-Feng, and Hsieh, Wen-Feng, Appl. Phys. Lett. 91, 181913, (2007)CrossRefGoogle Scholar
25. Tiginyanu, I.M. Ursaki, V. V. Zalamai, V. V. Langa, S. Hubbard, S. Pavlidis, D. and Foll, H. Appl. Phys. Lett. 83, 1551 (2003).CrossRefGoogle Scholar
26. Varshni, Y. P. Physica 34, 149 (1967).CrossRefGoogle Scholar
27. Park, C. M. Park, Y. S. Im, Hyunsik and Kang, T. W. Nanotechnology 17, 952, (2006)CrossRefGoogle Scholar
28. Wang, L. S. Zang, K. Y. Tripathy, S. and Chua, S. J. Appl. Phys. Lett. 85, 5881 (2004)CrossRefGoogle Scholar
29. Arora, A. K. Rajalakshmi, M. Ravindran, T. R. and Sivasubramanian, V. J. Raman Spectrosc, 38: 604617 (2007)CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

High Optical Quality GaN Nanopillars Grown on (111) Si Using Molecular Beam Epitaxy
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

High Optical Quality GaN Nanopillars Grown on (111) Si Using Molecular Beam Epitaxy
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

High Optical Quality GaN Nanopillars Grown on (111) Si Using Molecular Beam Epitaxy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *