Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-xl52z Total loading time: 0.343 Render date: 2021-04-19T19:56:59.898Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Growth of Si1−xGex, Strained Layers Using Atmospheric-Pressure CVD

Published online by Cambridge University Press:  22 February 2011

F. Namavar
Affiliation:
Spire Corporation, Bedford, MA
J. M. Manke
Affiliation:
Spire Corporation, Bedford, MA
E. P. Kvam
Affiliation:
Purdue University, West Lafayette, IN
M. M. Sanfacon
Affiliation:
Purdue University, West Lafayette, IN
C. H. Perry
Affiliation:
Northeastern University, Boston, MA
N. M. Kalkhoran
Affiliation:
Spire Corporation, Bedford, MA
Get access

Abstract

The objective of this paper is to demonstrate the epitaxial growth of SiGe strained layers using atmospheric-pressure chemical vapor deposition (APCVD). We have grown SiGe layers with various thicknesses and Ge concentrations at temperatures ranging from 800–1000°C. The samples were studied using a variety of methods, including transmission electron microscopy (TEM), high resolution X-ray diffraction (HRXRD) and Raman spectroscopy (RS). Both HRXRD and RS results indicate that samples with about 10% Ge and a thickness of about 1000 Å are almost fully strained. TEM analyses of these samples indicate a film defect density less than 105/cm2. SIMS results indicate that the oxygen concentration in the epitaxial layers is lower than that found in CZ substrates.

Our analyses also indicate that as-grown epitaxial Ge layers several microns thick have a defect density less than 107/cm2. The relatively low defect density in both SiGe and Ge layers grown on Si has been attributed to far higher dislocation glide velocity at the relatively elevated growth temperatures employed in CVD and to very good growth cleanliness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Bean, J. C., Mat. Res. Soc. Symp. Proc. 116, 479 (1988).CrossRefGoogle Scholar
2. Bean, J. C., Feldman, L. C., Fiory, A. T., Nakahara, S., and Robinson, I. K., J. Vac. Sci. Technol. A2, 436 (1984).CrossRefGoogle Scholar
3. Bean, J. C., Sheng, T. T., Feldman, L. C., Fiory, A. T., and Lynch, R. T., Appl. Phys. Lett. 44 (1), 102 (1984).CrossRefGoogle Scholar
4. Hull, R., Bean, J. C., Leibenguth, R. E., and Werder, D. J., J. Appl. Phys. 65 (12), 4723 (1989).CrossRefGoogle Scholar
5. Hirayama, H., Hiroi, M., Koyama, K., and Tatsumi, T., Appl. Phys. Lett. 56 (26), 2646 (1990).Google Scholar
6. Racanelli, M. and Greve, D. W., Appl. Phys. Lett. 56 (25), 2524 (1990).CrossRefGoogle Scholar
7. Patton, G. L., Comfort, J. H., Meyerson, B. S., Crabbe, E. F., Scilla, G. J., DeFresart, E., Stork, J. M., Sun, J. Y. C., Harame, D. L., and Burghartz, J. N., IEEE Elec. Dev. Lett. 11 (4), 171 (1990).CrossRefGoogle Scholar
8. Jung, K. H., Kim, Y. M., and Kwong, D. L., Appl. Phys. Lett. 56 (18), 1775 (1990).CrossRefGoogle Scholar
9. Hoyt, J. L., Noble, D. B., Gnani, T., King, C. A., Gibbons, J. F., Scott, M. P., Laderman, S. S., Nauka, K., Turner, J. E., Rosner, S. J., and Kamins, T. I., Proc. of the 2nd Inter. Conf. on Elec. Mat. (ICEM'90), 551 (1990).Google Scholar
10. Gronet, C. M., King, C. A., Opyd, W., Gibbons, J. F., Wilson, S. D., and Hull, R., J. Appl. Phys. 61, 2407 (1987).CrossRefGoogle Scholar
11. Paine, D. C., Howard, D. J., Stoffel, N. G. and Horton, J. A., J. Mater. Res. 5, 1023 (1990).CrossRefGoogle Scholar
12. Lockwood, D. J., Baribeau, J. M., and Timbrell, P. Y., J. Appl. Phys. 68 (8), 3049 (1989).CrossRefGoogle Scholar
13. Houghton, D. C., Perovic, D. D., Baribeau, J. -M., and Weatherly, G. C., J. Appl. Phys. 67 (4), 1850 (1990).CrossRefGoogle Scholar
14. Soref, R. A., Namavar, F., Lorenzo, J. P., Optics Lett. 15 (5), 270 (1990).CrossRefGoogle Scholar
15. Namavar, F., Cortesi, E., Manke, J. M., Kalkhoran, N. M., Johnson, E. A., DeSilvestre, O. A., Blythe, M. C., Johnson, M. H., and Perry, D. L., Proc. of the 2nd Inter. Conf. on Elec. Mat. (ICEM'90), 403 (1990).Google Scholar
16. Namavar, F., Kvam, E. P., Perry, D. L., Cortesi, E., Kalkhoran, N. M., and Manke, J. M., Mat. Res. Soc. Extended Abst. (EA-21), 249 (1990).Google Scholar
17. Rowell, N., National Research Council, Canada, private communication.Google Scholar
18. Fatemi, M. and Stahlbush, R. E., Appl. Phys. Lett. 58 (8), 825 (1991).CrossRefGoogle Scholar
19. Perry, C. H., Lu, F., Liu, D. W., and Alzyab, B., J. Raman Spectr. 21, 577 (1990);CrossRefGoogle Scholar
Anastasakis, E. M. and Perry, C. H., Solid State Comm., 9, 407 (1971).CrossRefGoogle Scholar
20. Brya, W. J., Solid State Comm., 12, 253 (1973);CrossRefGoogle Scholar
Renucci, M. A., Renucci, J. B., and Cardona, M., Light Scattering Solids (ed. Balkanski, M., Flammarion, Paris, 1971), p.326.Google Scholar
21. Cerdiera, F., Pinczuk, A., Bean, J. C., Batlogg, B., and Wilson, B. A., Appl. Phys. Lett. 45, 1138 (1984).CrossRefGoogle Scholar
22. Kvam, E. P., Eaglesham, D. J., Maher, D. M., Humphreys, C. J., Bean, J. C., Green, G. S., and Tanner, B. K., Mat. Res. Soc. Symp. Proc. 104, 623 (1988).CrossRefGoogle Scholar
23. Kvam, E. P., and Namavar, F., Appl. Phys. Lett., accepted March 1991.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 5 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 19th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Growth of Si1−xGex, Strained Layers Using Atmospheric-Pressure CVD
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Growth of Si1−xGex, Strained Layers Using Atmospheric-Pressure CVD
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Growth of Si1−xGex, Strained Layers Using Atmospheric-Pressure CVD
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *