Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-6zfdk Total loading time: 0.526 Render date: 2021-04-19T13:44:11.954Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Growth of Nonpolar (1100) Films and Heterostructures by Plasma-Assisted Molecular Beam Epitaxy

Published online by Cambridge University Press:  01 February 2011

Oliver Brandt
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D-10117 Berlin, Germany
Yue Jun Sun
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D-10117 Berlin, Germany
Klaus H. Ploog
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D-10117 Berlin, Germany
Get access

Abstract

We discuss the growth of M-plane GaN films and (In, Ga)N/GaN multiple quantum well (MQW) structures on LiAlO2(100) substrates by plasma-assisted molecular beam epitaxy. The adsorption and desorption kinetics of Ga on M-plane GaN is studied by reflection high-energy electron diffraction, allowing us to identify the optimum growth conditions with regard to surface morphology. Furthermore, we investigate the compositional profile of M-plane (In, Ga)N/GaN MQWs grown under conditions resulting in comparatively abrupt interfaces. The results demonstrate that significant In surface segregation occurs for the case of M-plane (In, Ga)N. The dependence of the transition energies of the M-plane MQWs on the actual well thickness reveals, however, that the structures are indeed free of electrostatic fields along the growth direction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Waltereit, P., Brandt, O., Trampert, A., Grahn, H. T., Menniger, J., Ramsteiner, M., Reiche, M., and Ploog, K. H., Nature 406, 865 (2000).CrossRefGoogle Scholar
[2] Sun, Y. J., Brandt, O., Ramsteiner, M., Grahn, H. T., and Ploog, K. H., Appl. Phys. Lett. 82, 3850 (2003).CrossRefGoogle Scholar
[3] Ghosh, S., Brandt, O., Grahn, H. T., and Ploog, K. H., Appl. Phys. Lett. 81, 3380 (2002).CrossRefGoogle Scholar
[4] Chen, C. Q., Gaevski, M. E., Sun, W. H., Kuokstis, E., Zhang, J. P., Fareed, R. S. Q., Wang, H. M., Yang, J. W., Simin, G., Khan, M. A., et al., Appl. Phys. Lett. 81, 3194 (2002).CrossRefGoogle Scholar
[5] Kuokstis, E., Chen, C. Q., Gaevski, M. E., Sun, W. H., Yang, J. W., Simin, G., Khan, M. A., Maruska, H. P., Hill, D. W., Chou, M. C., et al., Appl. Phys. Lett. 81, 4130 (2002).CrossRefGoogle Scholar
[6] Sun, Y. J., Brandt, O., Jahn, U., Liu, T. Y., Trampert, A., Cronenberg, S., Dhar, S., and Ploog, K. H., J. Appl. Phys. 92, 5714 (2002).CrossRefGoogle Scholar
[7] Sun, Y. J., Brandt, O., Cronenberg, S., Dhar, S., Grahn, H. T., Ploog, K. H., Waltereit, P., and Speck, J. S., Phys. Rev. B 67, 041306(R) (2003).CrossRefGoogle Scholar
[8] Craven, M. D., Lim, S. H., Wu, F., Speck, J. S., and DenBaars, S. P., Appl. Phys. Lett. 81, 469 (2002).CrossRefGoogle Scholar
[9] Ng, H. M., Appl. Phys. Lett. 80, 4369 (2002).CrossRefGoogle Scholar
[10] Sun, W. H., Yang, J. W., Chen, C. Q., Zhang, J. P., Gaevski, M. E., Kuokstis, E., Adivarahan, V., Wang, H. M., Gong, Z., Su, M., et al., Appl. Phys. Lett. 83, 2599 (2003).CrossRefGoogle Scholar
[11] Smith, A. R., Feenstra, R. M., Greve, D. W., Shin, M. S., Skowronski, M., Neugebauer, J., and Northrup, J. E., J. Appl. Phys. 16, 2242 (1998).Google Scholar
[12] Northrup, J. E., Neugebauer, J., Feenstra, R. M., and Smith, A. R., Phys. Rev. B 61, 9932 (2000).CrossRefGoogle Scholar
[13] Mula, G., Adelmann, C., Moehl, S., Oullier, J., and Daudin, B., Phys. Rev. B 64, 195406 (2001).CrossRefGoogle Scholar
[14] Adelmann, C., Brault, J., Jalabert, D., Gentile, P., Mariette, H., Mula, G., and Daudin, B., J. Appl. Phys. 91, 9638 (2002).CrossRefGoogle Scholar
[15] Adelmann, C., Brault, J., Mula, G., Daudin, B., Lymperakis, L., and Neugebauer, J., Phys. Rev. B 67, 165419 (2003).CrossRefGoogle Scholar
[16] Waltereit, P., Brandt, O., Ramsteiner, M., Trampert, A., Grahn, H. T., Menniger, J., Reiche, M., Uecker, R., Reiche, P., and Ploog, K. H., Phys. Status Solidi A 180, 133 (2000).3.0.CO;2-A>CrossRefGoogle Scholar
[17] Lee, C. D., Feenstra, R. M., Northrup, J. E., Lymperakis, L., and Neugebauer, J., Appl. Phys. Lett. 74, 1793 (2003).CrossRefGoogle Scholar
[18] Brandt, O., Waltereit, P., Dhar, S., Jahn, U., Sun, Y. J., Trampert, A., Ploog, K. H., Tagliente, M. A., and Tapfer, L., J. Vac. Sci. Tech. B 20, 1626 (2002).CrossRefGoogle Scholar
[19] Waltereit, P., Brandt, O., Ploog, K. H., Tagliente, M. A., and Tapfer, L., Phys. Rev. B 66, 165322 (2002).CrossRefGoogle Scholar
[20] Sun, Y. J., Brandt, O., and Ploog, K. H., J. Vac. Sci. Tech. B 21, 1350 (2003).CrossRefGoogle Scholar
[21] SAFIRE by VTS Schwarz GmbH, Hindenburgstrasse 12, D-76332 Bad Herrenalb, Germany.Google Scholar
[22] Brandt, O., Sun, Y. J., and Ploog, K. H., Phys. Rev. B 69, 165326 (2004).CrossRefGoogle Scholar
[23] Kreuzer, H. J., in Chemistry and Physics of Solid Surfaces VII, edited by Vanselow, R. and Howe, R. F. (Springer, Berlin-Heidelberg, 1988), vol. 7, p. 259.CrossRefGoogle Scholar
[24] Zinke-Allmang, M., Surf. Sci. Rep. 16, 377 (1992).CrossRefGoogle Scholar
[25] Brandt, O., Waltereit, P., and Ploog, K. H., J. Phys. D 35, 577 (2002).CrossRefGoogle Scholar
[26] Williamson, G. K. and Hall, W. H., Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
[27] Brandt, O., Sun, Y. J., Schönherr, H.-P., Ploog, K. H., Waltereit, P., Lim, S., and Speck, J. S., Appl. Phys. Lett. 83, 90 (2003).CrossRefGoogle Scholar
[28] Wu, J., Walukiewicz, W., Yu, K. M., Ager, J. W. III, Haller, E. E., Lu, H., and Schaff, W. J., Appl. Phys. Lett. 80, 4741 (2002).CrossRefGoogle Scholar
[29] Mayrock, O., Wünsche, H.-J., and Henneberger, F., Phys. Rev. B 62, 16870 (2000).CrossRefGoogle Scholar
[30] Fiorentini, V., Bernardini, F., and Ambacher, O., Appl. Phys. Lett. 80, 1204 (2002).CrossRefGoogle Scholar
[31] Mayrock, O., unpublished.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 7 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 19th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Growth of Nonpolar (1100) Films and Heterostructures by Plasma-Assisted Molecular Beam Epitaxy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Growth of Nonpolar (1100) Films and Heterostructures by Plasma-Assisted Molecular Beam Epitaxy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Growth of Nonpolar (1100) Films and Heterostructures by Plasma-Assisted Molecular Beam Epitaxy
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *