Skip to main content Accessibility help
×
Home
Hostname: page-component-77ffc5d9c7-n2wdk Total loading time: 0.69 Render date: 2021-04-23T18:33:51.916Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Growth of Large Diameter 6H SI and 4H n+ SiC Single Crystals

Published online by Cambridge University Press:  01 February 2011

Avinash Gupta
Affiliation:
agupta@ii-vi.com, II-VI Incorporated, WBG, Pine Brook, New Jersey, United States
Ping Wu
Affiliation:
pwu@ii-vi.com, II-VI Incorporated, WBG, Pine Brook, New Jersey, United States
Varatharajan Rengarajan
Affiliation:
vrengarajan@ii-vi.com, II-VI Incorporated, WBG, Pine Brook, New Jersey, United States
Xueping Xu
Affiliation:
xxu@ii-vi.com, II-VI Incorporated, WBG, Pine Brook, New Jersey, United States
Murugesu Yoganathan
Affiliation:
myoganathan@ii-vi.com, II-VI Incorporated, WBG, Pine Brook, New Jersey, United States
Cristopher Martin
Affiliation:
cmartin@ii-vi.com, II-VI Incorporated, WBG, Pine Brook, New Jersey, United States
Ejiro Emorhokpor
Affiliation:
eemorhokpor@ii-vi.com, II-VI Incorporated, WBG, Pine Brook, New Jersey, United States
Andrew Souzis
Affiliation:
asouzis@ii-vi.com, II-VI Incorporated, WBG, Pine Brook, New Jersey, United States
Ilya Zwieback
Affiliation:
izwieback@ii-vi.comzwieback@optonline.net, II-VI Incorporated, WBG, Pine Brook, New Jersey, United States
Thomas Anderson
Affiliation:
tanderson@ii-vi.com, II-VI Incorporated, WBG, Pine Brook, New Jersey, United States
Get access

Abstract

SiC single crystals are grown at II-VI by the seeded sublimation technique. The process has been scaled up and optimized to support commercial production of high-quality 100 mm diameter, Semi-Insulating (SI) 6H substrates and 100 mm 4H n+ substrates. The growth process incorporates special elements aimed at achieving uniform sublimation of the source, steady growth rate, uniform doping and reduced presence of background impurities.

Semi-insulating 6H substrates are produced using precise vanadium compensation. Vanadium doping is optimized to yield SI material with very high resistivity and low capacitance.

Crystal quality of the substrates is evaluated using a wide variety of techniques. Specific defects, their interaction and evolution during growth are described with emphasis on micropipes and dislocations. The current quality of the 6H SI and 4H n+ crystals grown at II-VI is summarized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Balakrishna, V. et al., US Patent No. 6,056,820 (2000).Google Scholar
2 Tairov, Y. and Tsvetkov, V., J. Crystal Growth, 243, 209 (1978).CrossRefGoogle Scholar
3 Gupta, A., Semenas, E. and Zwieback, I., US Patent No. 7,547,360 (2009).Google Scholar
4 Gupta, A., Semenas, E., Zwieback, I., Barrett, D., Souzis, A., US Patent No. 7,608,524 (2009).Google Scholar
5Patent pending.Google Scholar
6 Snyder, D. and Everson, W., US Patent No. 6,800,136 (2004).Google Scholar
7The Schottky barrier capacitance C of the substrate is measured using the standard 0.63mm2Hg probe at f=10 kHz and zero bias.Google Scholar
8 Lebedev, A. A., “Deep Level Centers in Silicon Carbide: A Review”, Semiconductors, 33, No. 2, 107 (1999).CrossRefGoogle Scholar
9 Jenny, J., Muller, S., Powell, A., Tsvetkov, V., Hobgood, H., Glass, R., Carter, C. Jr , J. Electron. Mater. 31, 366 (2002).CrossRefGoogle Scholar
10 Mitchel, W. C., Mitchell, W. D., Zvanut, M., Landis, G., Solid-State Electron. 48, 1693 (2004).CrossRefGoogle Scholar
11 Mitchel, W. C., Mitchelll, W. D., Smith, S., Evwaraye, A., Fang, Z., Look, D., Sizelove, J., in Silicon Carbide 2006: Materials, Processing and Devices, MRS Proc. 911.Google Scholar
12 Barrett, D., US Patent No. 5,611,955 (1997).Google Scholar
13 Bickermann, M., Epelbaum, B. M., Hofmann, D., Straubinger, T. L., Weingärtner, R., Winnacker, A., J. Crystal Growth, 233, 211 (2001).CrossRefGoogle Scholar
14 Bickermann, M., Hofmann, D., Straubinger, T. L., Weingärtner, R., Winnacker, A., Mater. Sci. Forum, 389–393, 139 (2002).CrossRefGoogle Scholar
15 Bickermann, M., Hofmann, D., Straubinger, T. L., Weingärtner, R., Winnacker, A., Mater. Sci. Forum, 433–436, 51 (2003).CrossRefGoogle Scholar
16 Bickermann, M., Weingärtner, R., Winnacker, A., J. Crystal Growth, 254, 390 (2003).CrossRefGoogle Scholar
17 Bickermann, M., Irmscher, K., Weingärtner, R., Winnacker, A., Mater. Sci. Forum, 457–460, 787 (2004).CrossRefGoogle Scholar
18 Stibal, R., Müller, S., Jantz, W., Pozina, G., Magnusson, B. and Ellison, A., Phys. Stat. Sol. C3, 1013 (2003)Google Scholar
19 Ohtani, N., Katsuno, M., Tsuge, H., Fujimoto, T., Nakabayashi, M., Yashiro, H., Sawamura, M., Aigo, T., J. Crystal Growth, 286, 55 (2006).CrossRefGoogle Scholar
20 Nakamura, D., Yamaguchi, S., Gunjishima, I., Hirose, Y., Kimoto, T., J. Crystal Growth, 304, 57 (2007).CrossRefGoogle Scholar
21 Xu, X., Vaudo, R. P., Salant, A., Malcarne, J., Flynn, J. S., Hutchins, E. L., Dion, J. A. and Brandes, G. R., in Proceedings of International Conference on High Temperature Electronics 2003, ed. Johnston, C., Vermessan, O. and Crossley, A., p 43.Google Scholar
22 Dudley, M., Huang, X. R., Huang, W., Powell, A., Wang, S., Neudeck, P., and Skowronski, M., Appl. Phys. Let. 75, 784 (1999).CrossRefGoogle Scholar
23 Ohtani, N. et al., J. Appl. Phys., 45, 1738 (2006).CrossRefGoogle Scholar
24 Powell, A., Brady, M., Tsvetkov, V., US Patent No. 7,294,324 (2007).Google Scholar
25 Dudley, M. (private communication).Google Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 14 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 23rd April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Growth of Large Diameter 6H SI and 4H n+ SiC Single Crystals
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Growth of Large Diameter 6H SI and 4H n+ SiC Single Crystals
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Growth of Large Diameter 6H SI and 4H n+ SiC Single Crystals
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *