Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-qpj69 Total loading time: 0.279 Render date: 2021-03-07T18:54:44.721Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Growth and Structure of Microcrystalline Silicon Prepared with Glow Discharge at Various Plasma Excitation Frequencies

Published online by Cambridge University Press:  15 February 2011

F. Finger
Affiliation:
Forschungszentrum Jülich, ISI, 52425 Jülich, Germany
R. Carius
Affiliation:
Forschungszentrum Jülich, ISI, 52425 Jülich, Germany
P. Hapke
Affiliation:
Forschungszentrum Jülich, ISI, 52425 Jülich, Germany
L. Houben
Affiliation:
Forschungszentrum Jülich, ISI, 52425 Jülich, Germany
M. Luysberg
Affiliation:
University of California - Berkeley, Dept. MS &ME, Berkeley, CA
M. Tzolov
Affiliation:
Bulgarian Academy of Sciences, Solar Energy &New Energy Sources, 1784 Sofia, Bulgaria
Get access

Abstract

Microcrystalline silicon was prepared with glow discharge deposition from silane/hydrogen mixtures at plasma excitation frequencies in the range 13.56 MHz - 116 MHz. The influence of the plasma excitation frequency on the growth and the structural properties of the material is investigated. At high excitation frequencies, higher growth and etching rates, larger grain sizes with less disorder within the grains, higher crystalline volume fractions, a reduced amorphous but more porous interface layer on glass and quartz substrates, and faster nucleation on amorphous silicon substrates are obtained. The results are discussed within a schematical growth model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below.

References

1Yang, L., Chen, L., Wiedemann, S. and Catalano, A., Mat. Res. Soc. Proc. 283, 463 (1992)CrossRefGoogle Scholar
2Wang, C. and Lucovsky, G., Proc. 21st IEEE PVSC (IEEE, New York) 1614 (1990)Google Scholar
3Meier, J., Torres, P., Platz, R., Dubail, S., Kroll, U., Anna Selvan, J.A., Pellaton Vaucher, N., Hof, C., Fischer, D., Keppner, H., Shah, A., Ufert, K.D., Giannoules, P. and Koehler, J., Mat. Res. Soc. Symp. Proc 420, 1996CrossRefGoogle Scholar
4Werner, J.H., Bergmann, R. and Brendel, R., Festkörperprobleme, 34, 115 (1995)Google Scholar
5Tsai, C. C., in Amorphous Silicon and Related Materials ed. Fritzsche, H., World Scientific Publishing Company, Singapore, 123 (1988)Google Scholar
6Nakata, M., Sakai, A., Uematsu, T., Namikawa, T., Shirai, H., Hanna, J.-I. and Shimizu, I.; Phil. Mag. B 63, 87 (1991)CrossRefGoogle Scholar
7Middya, A.R., Lloret, A., Perrin, J., Hue, J., Moncel, J.L., Parey, J.Y. and Rose, G., Mat. Res. Soc. Symp. Proc. 377, 119 (1995)CrossRefGoogle Scholar
8Hattori, Y., Kruangam, D., Katoh, K., Nitta, Y., Okamota, H. and Hamakawa, Y., Proc. 19th IEEE PVSC (IEEE, New York) 689 (1987)Google Scholar
9Oda, S., Noda, J. and Matsumura, M., Mat. Res. Soc. Symp. Proc. 118, 117 (1988)CrossRefGoogle Scholar
10Prasad, K., Finger, F., Curtins, H., Shah, A. and Baumann, J., Mat. Res. Soc. Symp. Proc. 164, 27 (1990)CrossRefGoogle Scholar
11Hollingsworth, R. E. and Bhat, P. K., Appl. Phys. Lett. 64, 616 (1994)CrossRefGoogle Scholar
12Finger, F., Hapke, P., Luysberg, M., Carius, R., Wagner, H. and Scheib, M., Appl. Phys. Lett. 65 2588 (1994)CrossRefGoogle Scholar
13Collins, R. and Yang, B., J. Vac. Sci. Technol. B7, 155 (1989)Google Scholar
14Parsons, G. N., Boland, J. J. and Tsang, J.C., Jpn. J. Appl. Phys. 31, 1943 (1992)CrossRefGoogle Scholar
15Drevillon, B., Prog. Crystal Growth and Charact. 27, 1 (1993)CrossRefGoogle Scholar
16Roca i Cabarrocas, P., Layadi, N., Heitz, T., Drevillon, B., Appl. Phys. Lett. 66, 3609 (1995)CrossRefGoogle Scholar
17Westlake, W. and Heintze, M., J. Appl. Phys. 77, 879 (1995)CrossRefGoogle Scholar
18Shirai, H., Jpn. J. Appl. Phys. 34, 450 (1995)CrossRefGoogle Scholar
19Tsai, C.C., Anderson, G.B. and Thompson, R., J. Non-Cryst. Solids 137&138, 673 (1991)CrossRefGoogle Scholar
20Oda, S., Proc. Jpn. Symp. Plasma Chem. 5, 7 (1992)Google Scholar
21Beneking, C., Finger, F. and Wagner, H., Proc. 11th EC PVSEC (Harwood Academic Press, Chur), 586 (1993)Google Scholar
22Kroll, U., Ziegler, Y., Meier, J., Keppner, H., Shah, A., Mat. Res. Soc. Symp. Proc. 336, 115 (1994)CrossRefGoogle Scholar
23Schwarzenbach, W., Howling, A.A., Fivaz, M., Brunner, S. and Hollenstein, Ch., J. Vac. Sci. Tech. A 14, 132 (1996)CrossRefGoogle Scholar
24Heintze, M., Solid State Phenom., B 44–46, 181 (1995)CrossRefGoogle Scholar
25Hapke, P., Thesis, Technical University Aachen (1995)Google Scholar
26Houben, L., Thesis, University Düsseldorf (1995)Google Scholar
27Luysberg, M., Hapke, P., Carius, R. and Finger, F., Phil. Mag. A, in press (1996)Google Scholar
28Houben, L., Luysberg, M., Hapke, P., Carius, R., Finger, F. and Wagner, H., unpublishedGoogle Scholar
29Finger, F., Carius, R., Hapke, P., Houben, L., Luysberg, M. and Tzolov, M., 9th International School On Condensed Matter Physics. Varna, , 1996, to be published by World Scientific,Google Scholar
30Carius, R., Finger, F., Luysberg, M., Hapke, P. and Backhausen, U., in ref. 29Google Scholar
31Malten, C., Finger, F., Hapke, P., Kulessa, T., Walker, C., Carius, R., Wagner, H., Flückiger, R., Mat. Res. Soc. Symp. Proc. 358, 757 (1995)CrossRefGoogle Scholar
32Hata, P., Taylor, P.C. and Finger, F., Mat. Res. Soc. Symp. Proc. 420 (1996)CrossRefGoogle Scholar
33Veprek, S., Mat. Res. Soc. Symp. Proc. 164, 39 (1990)CrossRefGoogle Scholar
34Shanks, H., Fang, C. J., Ley, L., Cardona, M., Demond, F. J. and Kalbitzer, S., Phys. Stat. Sol. B 110, 43 (1980)CrossRefGoogle Scholar
35Prasad, K., Kroll, U., Finger, F., Shah, A., Dorier, J.-L., Howling, A., Baumann, J. and Schubert, M., Mat. Res. Soc. Symp. Proc. 219, 383 (1991)CrossRefGoogle Scholar
36Bhat, P.K., Diprose, G., Searle, T.M., Austin, L.G., LeComber, P.G. and Spear, W.E., Physica B+C 117&118, 917 (1983)Google Scholar
37Matsuda, A., J. Non-Cryst. Solids 59–60, 767 (1983)CrossRefGoogle Scholar
38Drevillon, B., Solomon, I. and Fang, M.Mater. Res. Soc. Proc. 283, 455 (1992)CrossRefGoogle Scholar
39Heintze, M., Westlake, W. and Santos, P.V., J. Non-Cryst. Solids 164–166, 985 (1993)CrossRefGoogle Scholar
40Shirai, H., Drevillon, B. and Shimizu, I., Jap. J. Appl. Phys. 33, 5590 (1994)CrossRefGoogle Scholar
41Layadi, N., Roca i Cabarrocas, P., Drevillon, B. and Solomon, I., Phys. Rev. B 25, 5136 (1995)CrossRefGoogle Scholar
42Veprek, S., Heintze, M., Sarott, F.-A., Jurik-Rajman, M. and Willmot, P., Mat. Res. Soc. Symp. Proc. 118, 117 (1988)CrossRefGoogle Scholar
43 This follows also from hydrogen diffusion studies on plasma hydrogenated material. Beyer, W., private communication and J. Non-Cryst. Solids 198–200, 40 (1996),CrossRefGoogle Scholar
44Fortmann, C. M. and Shimizu, I., J. Non-Cryst. Solids 198–200, 1146 (1996)CrossRefGoogle Scholar
45Dimitrov, V. and Anestiev, L., to be published in Mat. Sci. and Engineering A; andGoogle Scholar
Baleva, M., private communication (1996). We thank M. Baleva for drawing our attention to this work.Google Scholar
46Hapke, P., Carius, R., Finger, F., Lambertz, A., Velieri, O., Wagner, H., this conferenceGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 4 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 7th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Growth and Structure of Microcrystalline Silicon Prepared with Glow Discharge at Various Plasma Excitation Frequencies
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Growth and Structure of Microcrystalline Silicon Prepared with Glow Discharge at Various Plasma Excitation Frequencies
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Growth and Structure of Microcrystalline Silicon Prepared with Glow Discharge at Various Plasma Excitation Frequencies
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *