No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
Microcrystalline silicon was prepared with glow discharge deposition from silane/hydrogen mixtures at plasma excitation frequencies in the range 13.56 MHz - 116 MHz. The influence of the plasma excitation frequency on the growth and the structural properties of the material is investigated. At high excitation frequencies, higher growth and etching rates, larger grain sizes with less disorder within the grains, higher crystalline volume fractions, a reduced amorphous but more porous interface layer on glass and quartz substrates, and faster nucleation on amorphous silicon substrates are obtained. The results are discussed within a schematical growth model.
Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.
* Views captured on Cambridge Core between September 2016 - 7th March 2021. This data will be updated every 24 hours.