Skip to main content Accessibility help
×
Home

Growth and Characterization of a-plane In0.2Ga0.8N/ GaN hetrostructures on r-Sapphire

Published online by Cambridge University Press:  19 December 2014

Shruti Mukundan
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore, India.
Lokesh Mohan
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore, India.
Greeshma Chandan
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore, India.
Basanta Roul
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore, India. Central Research Laboratory, Bharat Electronics, Bangalore, India
undefined S.B.Krupanidhi
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore, India.
Corresponding
E-mail address:
Get access

Abstract

Non-polar a-plane InGaN films were grown on a r-plane sapphire substrate by plasma assisted molecular beam epitaxy (PAMBE). The growth temperature and Indium flux were varied to optimize the desired composition of In0.23Ga0.77N on the (11-20) a-plane GaN epilayer grown on a (1-102) r-plane sapphire substrate. The structural, morphological and optical properties of the optimized composition have been studied. It was found that highly a-axis oriented InGaN epilayers with no phase separation can be grown at 540 °C with In/Ga flux ratio of 0.72. The composition of indium incorporation in single phase InGaN films was found to be 23% as estimated by high resolution X-ray diffraction. The room temperature band gap energy of single phase InGaN layers was determined by photoluminescence measurement and found to be around 2.56 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below.

References

Dingle, R., Sell, D.D., Stokowski, S.E.,and Ilegems, M., Phys. Rev. B 4, 415 (1971).CrossRef
Butcher, K.S.A., Tansley, T.L., Superlattices and Microstructures 38 137 (2005).CrossRef
Neufeld, Carl J., Toledo, Nikholas G., Cruz, Michael Iza, Samantha C., DenBaars, Steven P. and Mishra, Umesh K., Appl. Phys. Lett. 93, 143502 (2008).CrossRef
Adachi, M., Yoshizumi, Y., Enya, Y., Kyono, T., Sumitomo, T., Tokuyama, S., Takagi, S., Sumiyoshi, K., Saga, N., Ikegami, T., Ueno, M., Katayama, K., Nakamura, T., Appl. Phys. Exp. 3, 121001 (2010)CrossRef
Detchprohm, Theeradetch, Zhu, Mingwei, Li, Yufeng, Xia, Yong, Wetzel, Christian, Preble, Edward A., Liu, Lianghong, Paskova, Tanya, and Hanser, Drew, Appl. Phys. Lett. 92, 241109 (2008).CrossRef
El-Masry, N. A., Piner, E. L., and Liu, S. X. Bedair, S. M., Appl. Phys. Lett. 72(1), 5 January (1998)CrossRef
Pantha, B. N., Li, J., Lin, J. Y., and Jiang, H. X., Applied Physics Letters 96, 232105 (2010)CrossRef
Osamura, K., Naka, S., and Murakami, Y., J. Appl. Phys. 46, 3432, (1975).CrossRef
Moses, P.G. and Van de Walle, C.G., Appl. Phys. Lett, 96(2): p. 021908 (2010).CrossRef
Wu, J., et al. ., Appl. Phys. Lett., 80(25): p. 4741 (2002).CrossRef
Varshni, Y. P., Physica(Utrecht) 34, 149 (1967).
Leroux, M., Grandjean, N., Beaumont, B., Nataf, G., Semond, F., Massies, J. and Gilbart, P., J. Appl. Phys. 86, 3721 (1996).CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 13 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-mscqj Total loading time: 0.585 Render date: 2021-01-26T00:31:35.805Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Growth and Characterization of a-plane In0.2Ga0.8N/ GaN hetrostructures on r-Sapphire
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Growth and Characterization of a-plane In0.2Ga0.8N/ GaN hetrostructures on r-Sapphire
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Growth and Characterization of a-plane In0.2Ga0.8N/ GaN hetrostructures on r-Sapphire
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *