Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-7lw58 Total loading time: 0.399 Render date: 2023-02-07T03:00:10.105Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Free Volume Relaxation Process in Zr50Cu40Al10 Bulk Metallic Glass Studied by Positron Annihilation Techniques

Published online by Cambridge University Press:  01 February 2011

Akito Ishii
Affiliation:
bm0801@mtr.osakafu-u.ac.jp, OSAKA PREFECTURE UNIVERSITY, MATERIAL SCIENCE ENGINEER, 1-1 NAKAKU GAKUENCHO, SAKAI, N/A, Japan
Fuminobu Hori
Affiliation:
horif@mtr.osakafu-u.ac.jp, Osaka Prefecture University, Department of Materials Science, 1-1 Gakuen-cho,Nakaku, Sakai, 599-8531, Japan
Akihiro Iwase
Affiliation:
iwase@mtr.osakafu-u.ac.jp, Osaka Prefecture University, Department of Materials Science, 1-1 Gakuen-cho,Nakaku, Sakai, 599-8531, Japan
Yoshihiko Yokoyama
Affiliation:
yy@imr.tohoku.ac.jp, Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
Toyohiko J Konno
Affiliation:
tjkonno@imr.tohoku.ac.jp, Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
Get access

Abstract

Structural relaxation around free volume in Zr50Cu40Al10 bulk metallic glass (BMG) during isothermal annealing at 473, 573 and 673 K which are below glass transition temperature Tg =675 K have been investigated by positron annihilation lifetime (PAL) and coincidence Doppler broadening (CDB) measurements. The trends of change in positron lifetime, which correspond to the size of free volume at each annealing temperature, have a good correlation with their density change. These annealing processes obey a stretched exponential relaxation function (KWW: Kohlrausch-Williams-Watts law). Fitting parameters of KWW function, with relaxation time t0 and β, in each temperature were determined. These relaxation parameters depend on the annealing temperature, suggesting the distribution of activation energy for structural relaxation. Moreover, the profile of electron momentum distribution around free volume derived by CDB spectrum during annealing showed no appreciable change at each temperature. These facts suggest that long range chemical ordering, particularly around the free volume, dose not take place essentially.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Taub, A.I. and Spaepen, F., Acta Metall. 28, 17811788 (1980).CrossRefGoogle Scholar
2. Chen, H.S., Kimerling, L.C., Poate, J.M. and Brown, W.L., Appl. Phys. Lett. 32, 461463(1978).CrossRefGoogle Scholar
3. Flores, K.M., Suh, D., Howell, R., Asoka-Kumar, P., Sterne, P.A. and Dauskardt, R.H., Mater.Trans. 42, 619622 (2001).CrossRefGoogle Scholar
4. Beukel, A. van den and Sietsma, J., Acta Metall. Mater. 38, 383389 (1990).CrossRefGoogle Scholar
5. Hautojarvi, P. Positronin Solids(Berlin:Springer)(1979)CrossRefGoogle Scholar
6. Nagel, C., Rätzke, K., Schmidtke, E., Wolff, J., Geyer, U. and Faupel, F., Phys. Rev. B. 57, 1022510227 (1998).CrossRefGoogle Scholar
7. Gallino, I., Shah, M. B. and Busch, R., Acta Mater. 55, 13671376 (2007).CrossRefGoogle Scholar
8. Fan, G. J., Loffler, J. F., Wunderlichc, R. K. and H. -J. Fechtc, Acta Mater. 52, 667674(2004).CrossRefGoogle Scholar
9. Yano, T., Yorikado, Y., Akeno, Y., Hori, F., Yokoyama, Y., Iwase, A., Inoue, A. and Konno, T. J., Mater. Trans. 46, 28862892 (2005).CrossRefGoogle Scholar
10. Hori, F., Yano, T., Yokoyama, Y., Akeno, Y. and Konno, T. J., J. Alloy and Comp. 434, 207210 (2007).CrossRefGoogle Scholar
11. Yokoyama, Y., Inoue, K. and Fukaura, K., Mater. Trans. 43, 23162319 (2002).CrossRefGoogle Scholar
12. Yokoyama, Y., Fukaura, K. and Inoue, A., Intermetallics 10, 11131124 (2002).CrossRefGoogle Scholar
13. Kirkegaard, P., Eldrup, M., Mogensen, O.E. and Pedersen, N.J., Comp. Phys. Commun. 23, 307335 (1981).CrossRefGoogle Scholar
14. Seeger, A., Banhart, F. and Bauer, W., Positron annihilation rates in metals and semiconductors, Proceedings of the Ninth International Conference on Positron Annihilation 275277 (1991).Google Scholar
15. Petegem, S. Van, Segers, D., Pelosin, V. and Kuriplach, J., Appl. Phys. A. 81, 10391044(2005).CrossRefGoogle Scholar
16. Jackle, J., Rep. Prog. Phys. 49, 171231 (1986).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Free Volume Relaxation Process in Zr50Cu40Al10 Bulk Metallic Glass Studied by Positron Annihilation Techniques
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Free Volume Relaxation Process in Zr50Cu40Al10 Bulk Metallic Glass Studied by Positron Annihilation Techniques
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Free Volume Relaxation Process in Zr50Cu40Al10 Bulk Metallic Glass Studied by Positron Annihilation Techniques
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *