Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-4nk8m Total loading time: 0.182 Render date: 2021-10-17T07:35:31.621Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Free Volume Evolution in Bulk Metallic Glass during High Temperature Creep

Published online by Cambridge University Press:  11 February 2011

B. S. Sundar Daniel
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät, Kiel Universität, Kiel, Germany
Martin Heilmaier
Affiliation:
Institut für Werkstofftechnik und Werkstoffprüfung, Otto-von-Guericke-Universität Magdeburg, Germany
Birgit Bartusch
Affiliation:
IFW Dresden, Institut für Metallische Werkstoffe, Dresden, Germany
Jörn Kanzow
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät, Kiel Universität, Kiel, Germany
Katja Günther-Schade
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät, Kiel Universität, Kiel, Germany
Klaus Rätzke
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät, Kiel Universität, Kiel, Germany
Jürgen Eckert
Affiliation:
IFW Dresden, Institut für Metallische Werkstoffe, Dresden, Germany
Franz Faupel
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät, Kiel Universität, Kiel, Germany
Get access

Abstract

Metallic glasses lack long-range translational symmetry and have excess volume trapped within their amorphous structure, which has a direct bearing on their physical properties including deformation characteristics. Moreover, the trapped excess free volume is directly correlated to the defect concentration facilitating the possibility to model the temperature and time dependence of the free volume changes during creep as a trade off between defect generation and annihilation. Using differential scanning calorimetry (DSC) analysis the residual free volume of a metallic glass can be characterised based on the glass transition peak height (Δc p). In the present work constant strain rate tests were carried out at the ‘onset’ (T g on = 685 K) and ‘point of inflection’ (T g p = 705 K) of the calorimetric glass transition to study the time dependent flow behaviour in Zr55Cu30Al10Ni5 bulk metallic glass. Modelling based on DSC analysis and positron lifetime spectroscopy on samples creep deformed to different plastic strain values corroborate the stress decrease after the peak stress (‘stress overshoot’) occurring in bulk metallic glasses with increasing plastic strain to be associated with a small increase in free volume.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Illekova, E., Jergel, M., Kuhnast, F.-A., Mater. Sci. Engg. A278, 27 (2000).CrossRefGoogle Scholar
2. Reinker, B., Dopfer, M., Moske, M. and Samwer, K., Eur. Phys. J. B7, 359 (1999).CrossRefGoogle Scholar
3. Oligschleger, C., Gaukel, C. and Schober, H. R., J. Non-Cryst. Sol. 250–252, 660 (1999).CrossRefGoogle Scholar
4. Van Aken, B., De Hey, P., Sietsma, J., Mater. Sci. & Eng. A278, 247 (2000).CrossRefGoogle Scholar
5. Daniel, B. S. S., Reger-Leonhard, A., Heilmaier, M., Eckert, J. and Schultz, L., Mechanics of Time-Dependent Materials 6, 193 (2003).CrossRefGoogle Scholar
6. Schermeyer, D. and Neuhäuser, H., Mater. Sci. & Engg. A 226–228 846 (1997).CrossRefGoogle Scholar
7. Volkert, C. A. and Spapen, F., Mater. Sci. & Engg. 97, 449 (1988).CrossRefGoogle Scholar
8. Busch, R., Bakke, E. and Johnson, W. L., Acta Mater. 46, 4725 (1998).CrossRefGoogle Scholar
9. Louzguine, D. V., Inoue, A., Saito, M. and Waseda, Y., Scripta Mater. 42, 289 (2000).CrossRefGoogle Scholar
10. Nagel, C., Rätzke, K., Schmidke, E., Wolff, J., Geyer, U. and Faupel, F., Phys. Rev. B57, 10224 (1998).CrossRefGoogle Scholar
11. Flores, K. M., Suh, D. and Dauskardt, R. H., J. Mater. Res. 17, 1153 (2003).CrossRefGoogle Scholar
12. Taub, A. I., Acta Metall. 28, 633 (1980).CrossRefGoogle Scholar
13. Leonhard, A., Xing, L. Q., Heilmaier, M., Gebert, A., Eckert, J. and Schultz, L., NanoStr. Mater. 10, 805 (1998).CrossRefGoogle Scholar
14. Reger-Leonhard, A., Heilmaier, M. and Eckert, J., Scripta Mater. 43, 459 (2000).CrossRefGoogle Scholar
15. Kirkegaard, P., Eldrup, M., Mogensen, O. E. and Pedersen, N. J., Comp. Phys. Comm., 23 (1981) 307.CrossRefGoogle Scholar
16. Cohen, M. H. and Turnbull, D., J. Chem. Phys. 31, 1164 (1959).CrossRefGoogle Scholar
17. Spaepen, F., Acta Metall. 25, 407 (1977).CrossRefGoogle Scholar
18. Duine, P. A., Sietsma, J. and van den Beukel, A., Acta Metall. Mater. 40, 743 (1992).CrossRefGoogle Scholar
19. Fulcher, G. S., J. Amer. Ceram. Soc. 8, 339 (1925).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Free Volume Evolution in Bulk Metallic Glass during High Temperature Creep
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Free Volume Evolution in Bulk Metallic Glass during High Temperature Creep
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Free Volume Evolution in Bulk Metallic Glass during High Temperature Creep
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *