Skip to main content Accessibility help
×
Home

Formation of a Co3O4 Top Layer in SiO2 Cobalt Containing Coatings Sol-gel Obtained

Published online by Cambridge University Press:  21 March 2011

H. Tototzintle-Huitle
Affiliation:
Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Apdo. Postal 1-798, C.P. 76001, Querétaro, Qro., México
A. Ramos-Mendoza
Affiliation:
Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Apdo. Postal 1-798, C.P. 76001, Querétaro, Qro., México
A. Mendoza-Galván
Affiliation:
Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Apdo. Postal 1-798, C.P. 76001, Querétaro, Qro., México
J. González-Hernández
Affiliation:
Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Apdo. Postal 1-798, C.P. 76001, Querétaro, Qro., México
B. S. Chao
Affiliation:
Energy Conversion Devices, Troy, MI
Get access

Abstract

SiO2 coatings containing cobalt were prepared on glass substrates using the sol-gel method. It has been found that in coatings with a Si to Co ratio of 1.3, a layer of Co3O4 is formed at the free surface of the coating upon thermal annealings in air. The properties of the coatings were studied using optical, x-ray and Auger depth profile measurements. The thermal annealings in the temperature range of 300 to 500 oC, in steps of 50 oC, were performed for 10 min. Some samples were subjected to an isothermal annealing at 400 °C for different times from 10 to 210 min. From the x-ray diffraction patterns the cubic spinel structure of Co3O4 was detected after the thermal treatments. The optical reflection and transmission spectra for each annealing temperature and annealing time, are described with an air-Co3O4-SiO2:Co2+-substrate system. From this, the cobalt oxide thickness was obtained as a function of the annealing temperature and annealing time. From the Arrhenius plots, in the temperature range studied, it was found that the activation energy for the growth of the cobalt oxide layer is 0.41 eV. The layer thickness follows a parabolic behavior with time, which suggests a diffusion-controlled process. The Auger depth profiles obtained from a sample annealed at 500 °C confirm the optical model used.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Brinker, C. J. and Scherer, G. W., Sol-Gel Science (Academic Press, New York, 1990).Google Scholar
2. Orgaz, F. and Rawson, H., J. Non-Cryst.. Solids 82, 378 (1986).CrossRefGoogle Scholar
3. Durán, A., Navarro, J. M. Fernández, Casariego, P., and Joglar, A., J. Non-Cryst. Solids 82, 391 (1986).CrossRefGoogle Scholar
4. Yáñez-Limón, J. M., Pérez-Robles, J. F., González-Hernández, J., Zamorano-Ulloa, R., and Ramírez-Rosales, D., Thin Solid Films 373, 184 (2000).CrossRefGoogle Scholar
5. Pérez-Robles, J. F., García-Rodríguez, F. J., Jiménez-Sandoval, S., and GonzálezHernández, J., J. Raman Spectrosc. 30, 1099 (1998).3.0.CO;2-0>CrossRefGoogle Scholar
6. Mendoza-Galván, A., Pérez-Robles, J. F., Espinoza-Beltrán, F. J., Ramírez-Bon, R., Vorobiev, Y. V., González-Hernández, J., and Martínez, G., J. Vac. Sci. Technol. A 17, 1103 (1999).CrossRefGoogle Scholar
7. De, G., Gusso, M., Tapfer, L., Catalano, M., Gonella, F., Mattel, G., Mazzoldi, P., and Battaglin, G., J. Appl. Phys. 80, 6734 (1996).CrossRefGoogle Scholar
8. Ennas, G., Mei, A., Musinu, A., Piccaluga, G., Pinna, G., and Solinas, S., J. Non-Cryst. Solids 232–234, 587 (1998).CrossRefGoogle Scholar
9. Ramos-Mendoza, A., Tototzintle-Huitle, H., Mendoza-Galván, A., González-Hernández, J., and Chao, B. S., J. Vac. Sci. Technol. A, to be published.Google Scholar
10. Estrada, W., Fantini, M. C. A., Castro, S. C. de, Fonseca, C. N. Polo da, and Gorenstein, A., J. Appl. Phys. 74, 5835 (1993).CrossRefGoogle Scholar
11. Athey, P. Ruzakowski, Urban, F. K. III, Tabet, M. F., and McGahan, W. A., J. Vac. Sci. Technol. A 14, 685 (1996).CrossRefGoogle Scholar
12. Jellison, G. E. Jr and Modine, F. A., Appl. Phys. Lett. 69, 371 (1996); 69, 2137(E) (1996).CrossRefGoogle Scholar
13. Jellison, G. E. Jr, Thin Solid Films 234, 416 (1993).CrossRefGoogle Scholar
14. Zeng, H. C., Lin, J. and Tan, K. L., J. Mater. Res. 10, 3096 (1995).CrossRefGoogle Scholar
15. Crank, J., The Mathematics of Diffusion, 2nd ed. (Oxford University Press, New York, 1999) p. 305.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 5 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 19th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-2rmft Total loading time: 0.358 Render date: 2021-01-19T13:13:15.505Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Formation of a Co3O4 Top Layer in SiO2 Cobalt Containing Coatings Sol-gel Obtained
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Formation of a Co3O4 Top Layer in SiO2 Cobalt Containing Coatings Sol-gel Obtained
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Formation of a Co3O4 Top Layer in SiO2 Cobalt Containing Coatings Sol-gel Obtained
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *