Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-xl52z Total loading time: 0.284 Render date: 2021-04-16T17:12:31.476Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Fluorescent Ceramic Nanoprobes for Cellular Imaging

Published online by Cambridge University Press:  12 July 2019

Timothy J. Boyle
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, 1001 University Boulevard SE, Albuquerque, New Mexico 87106
Bernadette A. Hernandez-Sanchez
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, 1001 University Boulevard SE, Albuquerque, New Mexico 87106
Timothy N. Lambert
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, 1001 University Boulevard SE, Albuquerque, New Mexico 87106
Harry D. Pratt
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, 1001 University Boulevard SE, Albuquerque, New Mexico 87106
Janet L. Oliver
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, 1001 University Boulevard SE, Albuquerque, New Mexico 87106 University of New Mexico, School of Medicine
Nicholas L. Andrews
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, 1001 University Boulevard SE, Albuquerque, New Mexico 87106 University of New Mexico, School of Medicine
Diane Lidke
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, 1001 University Boulevard SE, Albuquerque, New Mexico 87106 University of New Mexico, School of Medicine
Bridget S. Wilson
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, 1001 University Boulevard SE, Albuquerque, New Mexico 87106 University of New Mexico, School of Medicine
Get access

Abstract

Format

This is a copy of the slides presented at the meeting but not formally written up for the volume.

Abstract

As in vivo cellular imaging becomes the necessary norm for understanding cancer and other diseases, new non-toxic nanoprobes are going to be required to replace the high quality cadmium based nanoprobes in use today. We are developing less toxic probes based on two types of luminescent ceramic nanoparticles: naturally occurring fluorescent (NOF) mimics and Ln-based ceramic oxide materials. The NOF minerals of interest and that have demonstrated initial luminosity of sufficient brightness for use in cellular studies that include sphalerite, scheelite, manganoan and perovskite nanoparticles. For Ln-based materials we have shown that Ln-doped zincite will also luminesce enough to allow for quantification in cellular activity. Once formed, these probes are functionalized such that they can be delivered to desired cellular targets. Probe derivatization has focused on surface capping with functionalized poly(ethyleneglycol) molecules/lipids to yield water soluble NCs and polyarginine-based transporters for transmembrane delivery. The probes are being evaluated for their luminescent properties, as well as their non-toxicity and ability to report on cell-signaling events with various cell lines using multi-spectral, confocal microscopy, and other techniques. Preliminary interdisciplinary studies have validated the basic approaches for the synthesis of NOF nanoprobes and the bio-delivery and imaging of nanoparticles. Work to optimize the design, delivery, and imaging of these new nanoprobes is expected to achieve the NIH directed goal of increasing in the sensitivity and specificity of molecular probes for imaging. Details of the synthesis, functionalization and biological imaging using these probes will be presented. This work partially supported by the United States Department of Energy under contract number DE-AC04-94AL85000. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy and by the National Institutes of health through the NIH Roadmap for Medical Research, Grant #1 R21 EB005365-01. Information on this RFA (Innovation in Molecular Imaging Probes) can be found at http://grants.nih.gov/grants/guide/rfa-files/RFA-RM-04-021.html.

Type
Slide Presentations
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 5 *
View data table for this chart

* Views captured on Cambridge Core between 12th July 2019 - 16th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fluorescent Ceramic Nanoprobes for Cellular Imaging
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Fluorescent Ceramic Nanoprobes for Cellular Imaging
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Fluorescent Ceramic Nanoprobes for Cellular Imaging
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *