Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-q7jt5 Total loading time: 0.421 Render date: 2021-03-05T11:24:31.590Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Ferroelectric Thin Films Grown on Base-Metal Foils for Embedded Passives

Published online by Cambridge University Press:  01 February 2011

Beihai Ma
Affiliation:
bma@anl.gov, Argonne National Laboratory, Energy Systems Division, 9700 S Cass Ave, Argonne, IL, 60439, United States, 630-252-9961, 630-252-3604
Do-Kyun Kwon
Affiliation:
dkwon@anl.gov, Argonne National Laboratory, Argonne, IL, 60439, United States
Manoj Narayanan
Affiliation:
mnarayanan@anl.gov, Argonne National Laboratory, Argonne, IL, 60439, United States
U. Balachandran
Affiliation:
balu@anl.gov, Argonne National Laboratory, Argonne, IL, 60439, United States
Corresponding
Get access

Abstract

Development of electronic devices with higher performance and smaller size requires the passive components to be embedded within a printed wire board (PWB). The “film-on-foil” approach is the most viable method to fabricate suitable passive components. We have deposited high-permittivity thin films of ferroelectric Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) on base metal foils by chemical solution deposition. These capacitors could be embedded into PWBs. However, formation of a parasitic low-permittivity interfacial layer of nickel oxide during thermal processing of the PLZT films considerably reduces the capacitance density. Two approaches were taken to overcome the problem. In the first, a conductive buffer layer of lanthanum nickel oxide (LNO) was inserted between the PLZT film and the nickel foil to hinder the formation of deleterious interfacial oxide. In the second, high temperature processing was done under low oxygen partial pressure such that no interfacial oxide was formed. By these approaches, we have grown high-quality ferroelectric PLZT films on nickel and copper foils. With samples of PLZT grown on LNO-buffered Ni, we measured a dielectric constant of 1300 (at 25°C) and 1800 (at 150°C), leakage current density of 6.6 × 10−9 A/cm2 (at 25°C) and 1.4 × 10−8 A/cm2 (at 150°C), and breakdown field strength >1.2 MV/cm. With samples of PLZT on Cu, we obtained encouraging initial results of dielectric constant >450 and dielectric loss tan(δ) ≈0.04.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Borland, W., Doyle, M., Dellis, L., Renovales, O., and Majumdar, D., Mater. Res. Soc. Symp. Proc., 833, 143151 (2005).Google Scholar
[2] Nelms, D., Ulrich, R., Schaper, L., and Reeder, S., Proceedings of the 48th IEEE Electronic Components and Technology Conference, pp. 247251, Institute of Electrical and Electronic Engineers, Piscataway, NJ (1998).Google Scholar
[3] Zhang, W., Sasaki, K., and Hata, T., Jpn. J. Appl. Phys., Part 1, 35 [9B], 50845088 (1996).10.1143/JJAP.35.5084CrossRefGoogle Scholar
[4]. Zhu, Y., Zhu, J., Song, Y.J., and Desu, S.B., Appl. Phys. Lett., 73 [14], 19581960 (1998).10.1063/1.122334CrossRefGoogle Scholar
[5] Ihlefeld, J., Laughlin, B., Hunt-Lowery, A., Borland, W., Kingon, A., and Maria, J.P., J. Electroceramics, 14 [2], 95102 (2005).10.1007/s10832-005-0866-6CrossRefGoogle Scholar
[6] Kingon, A.I. and Srinivasan, S., Nature Materials, 4, 233237 (2005).10.1038/nmat1334CrossRefGoogle Scholar
[7] Dawley, J.T. and Clem, P.G., Appl. Phys. Lett., 81, 3028 (2002).10.1063/1.1516630Google Scholar
[8] Losego, M.D., Jimison, L.H., Ihlefeld, J.F., and Maria, J.-P., Appl. Phys. Lett., 86, 172906 (2005).CrossRefGoogle Scholar
[9] Zou, Q., Ruda, H. E., and Yacobi, B. G., Appl. Phys. Lett., 78, 12821284 (2001).10.1063/1.1350425CrossRefGoogle Scholar
[10] Kaufman, D.Y., Sabha, S., and Uprety, K., Proceedings of the 12th US-Japan Seminar on Dielectric and Piezoelectric Ceramics, pp. 305308, Annapolis, MD (November 2005).Google Scholar
[11] Haertling, G. H. and Land, C. E., J. Amer. Ceram. Soc., 54, 111 (1971).10.1111/j.1151-2916.1970.tb12105.x-i1CrossRefGoogle Scholar
[12] Dai, X., DiGiovanni, A., and Viehland, D., J Appl. Phys., 74, 33993405 (1993).10.1063/1.354567Google Scholar
[13] Jonscher, K., Dielectric Relaxation in Solids, Chelsea Dielectrics Press, London (1983).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 6 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Ferroelectric Thin Films Grown on Base-Metal Foils for Embedded Passives
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Ferroelectric Thin Films Grown on Base-Metal Foils for Embedded Passives
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Ferroelectric Thin Films Grown on Base-Metal Foils for Embedded Passives
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *