Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-prt4h Total loading time: 0.199 Render date: 2021-10-21T16:10:53.452Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Fabrication of ZnO Bridging Nanowire Device by a Single-Step Chemical Vapor Deposition Method

Published online by Cambridge University Press:  01 February 2011

Yanbo Li
Affiliation:
yblee.cn@gmail.com, The University of Tokyo, Tokyo, Japan
Ippei Nagatomo
Affiliation:
nagatomo@lelab.t.u-tokyo.ac.jp, The University of Tokyo, Tokyo, Japan
Ryohei Uchino
Affiliation:
uchino@lelab.t.u-tokyo.ac.jp, The University of Tokyo, Tokyo, Japan
Ichiro Yamada
Affiliation:
yamada@mech.t.u-tokyo.ac.jp, The University of Tokyo, Tokyo, Japan
Jean-Jacques Delaunay
Affiliation:
jean@mech.t.u-tokyo.ac.jp, The University of Tokyo, Tokyo, Japan
Get access

Abstract

ZnO nanowires are directly integrated into a working device by a single-step chemical vapor deposition (CVD) method. Gold catalyst is patterned on a quartz glass substrate using a comb-shaped shadow mask and then ZnO is grown on the patterned substrate by CVD. Thick ZnO layers formed on the gold-patterned areas serve as native electrodes. Ultra-long (˜100 μm) ZnO nanowires grown across the gap between the ZnO electrodes and the nanowires serve as the sensing elements of the device. The device exhibits high sensitivity and fast response to UV illumination in air. Our method can be used to fabricate other metal oxide semiconductor bridging nanowire devices, which have promising applications in photodetection and gas sensing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kind, H., Yan, H., Messer, B., Law, M., and Yang, P., Adv. Mater. 14, 158 (2002).3.0.CO;2-W>CrossRefGoogle Scholar
2. Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, P., Science 292, 1897 (2001).CrossRefGoogle Scholar
3. Ju, S., Facchetti, A., Xuan, Y., Liu, J., Ishikawa, F., Ye, P., Zhou, C., Marks, T. J., and Janes, D. B., Nature Nanotech. 2, 378 (2007).CrossRefGoogle Scholar
4. Hoffman, R. L., Norris, B. J., and Wager, J. F., Appl. Phys. Lett. 82, 733 (2003).CrossRefGoogle Scholar
5. Delaunay, J.-J., Nagatomo, I., Uchino, R., Li, Y. B., Shuzo, M., and Yamada, I., Adv. Mater. Res. 47, 634 (2008).CrossRefGoogle Scholar
6. Takahashi, Y., Kanamori, M., Kondoh, A., Minoura, H., and Ohya, Y., Jpn. J. Appl. Phys. 33, 6611 (1994).CrossRefGoogle Scholar
7. Lyu, S. C., Zhang, Y., and Lee, C. J., Chem. Mater. 15, 3294 (2003).CrossRefGoogle Scholar
8. Huang, M. H., Wu, Y., Feick, H., Tran, N., Weber, E., and Yang, P., Adv. Mater. 13, 113 (2001).3.0.CO;2-H>CrossRefGoogle Scholar
9. Li, Y., Zheng, M., Ma, L., Zhong, M., and Shen, W., Inorg. Chem. 47, 3140 (2008).CrossRefGoogle Scholar
10. Fan, Z., Chang, P., Lu, J. G., Walter, E. C., Penner, R. M., Lin, C., and Lee, H. P., Appl. Phys. Lett. 85, 6128 (2004).CrossRefGoogle Scholar
11. Soci, C., Zhang, A., Xiang, B., Dayeh, S. A., Aplin, D. P. R., Park, J., Bao, X. Y., Lo, Y. H., and Wang, D., Nano Lett. 7, 1003 (2007).CrossRefGoogle Scholar
12. Zhang, X., Zhang, Y., Wang, Z. L., Mai, W., Gu, Y., Chu, W., and Wu, Z., Appl. Phys. Lett. 92, 162102 (2008).CrossRefGoogle Scholar
13. Haraguchi, K., Hiruma, K., Katsuyama, T., Tominaga, K., Shirai, M., and Shimada, T., Appl. Phys. Lett. 69, 386 (1996).CrossRefGoogle Scholar
14. Islam, M. S., Sharma, S., Kamins, T. I., and Williams, R. S., Nanotechnology 15, L5 (2004).CrossRefGoogle Scholar
15. Lee, J. S., Islam, M. S., and Kim, S., Sens. Actuators B 126, 73 (2007).CrossRefGoogle Scholar
16. Conley, J. F., Stecher, L., and Ono, Y., Appl. Phys. Lett. 87, 223114 (2005).CrossRefGoogle Scholar
17. Chen, R. S., Wang, S. W., Lan, Z. H., Tsai, J. T. H., Wu, C. T., Chen, L. C., Chen, K. H., Huang, Y. S., and Chen, C. C., Small 4, 925 (2008).CrossRefGoogle Scholar
18. Lee, J. S., Islam, M. S., and Kim, S., Nano Lett. 6, 1487 (2006).CrossRefGoogle Scholar
19. He, R., Gao, D., Fan, R., Hochbaum, A. I., Carraro, C., Maboudian, R., and Yang, P., Adv. Mater. 17, 2098 (2005).CrossRefGoogle Scholar
20. Albert-Polacek, K. and Wassermann, E. F., Thin Solid Films 37, 65 (1976).CrossRefGoogle Scholar
21. Shchipalov, Y. K., Glass Ceram. 57, 374 (2000).CrossRefGoogle Scholar
22. Kim, D. S., Scholz, R., Gösele, U., and Zacharias, M., Small, 4, 1615 (2008).CrossRefGoogle Scholar
23. Park, W. I., Kim, D. H., Jung, S. W., and Yi, G. C., Appl. Phys. Lett. 80, 4232 (2002).CrossRefGoogle Scholar
24. Li, Y., Della Valle, F., Simonnet, M., Yamada, I., and Delaunay, J.-J., Nanotechnology 20, 045501 (2009).CrossRefGoogle Scholar
25. Li, Y., Della Valle, F., Simonnet, M., Yamada, I., and Delaunay, J.-J., Appl. Phys. Lett. 94, 023110 (2009).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fabrication of ZnO Bridging Nanowire Device by a Single-Step Chemical Vapor Deposition Method
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Fabrication of ZnO Bridging Nanowire Device by a Single-Step Chemical Vapor Deposition Method
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Fabrication of ZnO Bridging Nanowire Device by a Single-Step Chemical Vapor Deposition Method
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *