Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-jkwcl Total loading time: 0.569 Render date: 2022-11-27T00:06:06.169Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Fabrication of Molecular Micro-NanoStructures by Surface-Tension-Driven Technique

Published online by Cambridge University Press:  17 March 2011

Ilenia Viola
Affiliation:
National Nanotechnology Laboratory (NNL) of INFM-CNR, Lecce, 73100, Italy
Fabio Della Sala
Affiliation:
National Nanotechnology Laboratory (NNL) of INFM-CNR, Lecce, 73100, Italy
Manuel Piacenza
Affiliation:
National Nanotechnology Laboratory (NNL) of INFM-CNR, Lecce, 73100, Italy
Laura Favaretto
Affiliation:
ISOF of CNR, Bologna, 40129, Italy
Massimo Gazzano
Affiliation:
ISOF of CNR, Bologna, 40129, Italy
Giovanna Barbarella
Affiliation:
ISOF of CNR, Bologna, 40129, Italy
Roberto Cingolani
Affiliation:
National Nanotechnology Laboratory (NNL) of INFM-CNR, Lecce, 73100, Italy
Giuseppe Gigli
Affiliation:
National Nanotechnology Laboratory (NNL) of INFM-CNR, Lecce, 73100, Italy
Get access

Extract

We present the fabrication of a pixels structure by a well-defined pattern replication of a micrometer template driven by a surface free-energy lithographic technique, realized by molecular aggregation in dewetting conditions and by confining the liquid solution with geometric boundaries. The organization in the solid-state of the selected thiophene-based molecular materials allows to realize a bicoloured, green and red-emitting pixels structure, by exploiting the molecular structural arrangement, induced during a dewetting process, and the great conformational flexibility of DTT7Me.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Leclere, Ph., Surin, M., Viville, P., Lazzaroni, R., Kilbinger, A.F.M., Henze, O., Feast, W.J., Cavallini, M., Biscarini, F., Schenning, A., Meijer, E., Chem. Mater., 2004, 16, 4452.CrossRefGoogle Scholar
[2] Loi, M.A., Como, E. Da, Dinelli, F., Murgia, M., Zamboni, R., Biscarini, F., Muccini, M., Nature Mater., 2005, 4, 81.CrossRefGoogle Scholar
[3] Brinkmann, M., Graff, S., Biscarini, F., Phys. Rev. B, 2002, 66, 1654–30.Google Scholar
[4] Sirringhaus, H., Tessler, N., Friend, R.H., Science, 1998, 280, 1741.CrossRefGoogle Scholar
[5] Gelinck, G.H., et al., Nature Mater., 2004, 3, 106.CrossRefGoogle Scholar
[6] Burroughes, H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L., Holmes, A.B., Nature, 1990, 347, 539.CrossRefGoogle Scholar
[7] Tang, C.W., Slyke, S.A. Van, Appl. Phys. Lett., 1987, 51, 913.CrossRefGoogle Scholar
[8] Chabinyc, M.L., Wong, W.S., Paul, K.E., Street, R.A., Adv. Mater., 2003, 15(22), 1903.CrossRefGoogle Scholar
[9] Brabec, C.J., Sariciftci, N.S., Hummelen, J.C., Adv. Funct. Mater., 2001, 11, 15.3.0.CO;2-A>CrossRefGoogle Scholar
[10] Mazzeo, M., Vitale, V., Sala, F. Della, Anni, M., Barbarella, G., Favaretto, L., Sotgiu, G., Cingolani, R., Gigli, G., Adv. Mater., 2005, 17, 34.CrossRefGoogle Scholar
[11] Xia, Y., Whitesides, G.M., Angew. Chem. Int. Ed., 1998, 37, 550.3.0.CO;2-G>CrossRefGoogle Scholar
[12] Sharma, A., Langmuir, 1993, 9, 861.CrossRefGoogle Scholar
[13] Zhao, J., Jiang, S., Wang, Q., Liu, X., Ji, X., Jiang, B., Appl. Surface Science, 2004, 236, 131.CrossRefGoogle Scholar
[14] Viola, I., Mazzeo, M., Passabi, A., D'Amone, S., Cingolani, R., Gigli, G. Adv. Mater., 2005, 17, 2935.CrossRefGoogle Scholar
[15] Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A., Nature, 1997, 389, 827.CrossRefGoogle Scholar
[16] Bowmann, C., Newell, A.C., Rev. Mod. Phys., 1998, 70, 289.CrossRefGoogle Scholar
[17] Scheer, H.C., Schulz, H., Hoffmann, T., Torres, C.M.S., J. Vac. Sci. Technol. B, 1998, 16(6), 3917.CrossRefGoogle Scholar
[18] Karthaus, O., Koito, T., Shimomura, M., Mater. Science and Engineering C, 1999, 8–9, 523.CrossRefGoogle Scholar
[19] Harkema, S., Schaffer, E., Morariu, M.D., Steiner, U., Langmuir, 2003, 19, 9714.CrossRefGoogle Scholar
[20] Maillard, M., Motte, L., Pileni, M.P., Adv. Mater., 2001, 13(3), 200.3.0.CO;2-P>CrossRefGoogle Scholar
[21] Gigli, G., Anni, M., Cingolani, R., Barbarella, G., Advanced Semiconductor and Organic Nano-Techniques, Chapter 5, 241–291, Morkoc, H. (Ed.) 2003, Elsevier, USA.Google Scholar
[22] Barbarella, G., Melucci, M., Sotgiu, G., Adv. Mater., 2005, 17, 1581.CrossRefGoogle Scholar
[23] Karthaus, O., Adachi, C., Kurimura, S., Oyamada, T., Appl. Phys. Lett., 2004, 84(23), 4697.CrossRefGoogle Scholar
[24] Cavallini, M., Lazzaroni, R., Zamboni, R., Biscarini, F., Timpel, D., Zerbetto, F., Clarkson, G., Leigh, D., J. Phys. Chem. B, 2001, 105, 10826.CrossRefGoogle Scholar
[25] Gigli, G., Lomascolo, M., Cingolani, R., Barbarella, G., Zambianchi, M., Antolini, L., Sala, F. Della, Carlo, A. Di, Lugli, P., Appl. Phys. Lett., 1998, 73, 2414.CrossRefGoogle Scholar
[26] Alivisatos, A.P., Science, 1996, 271, 933.CrossRefGoogle Scholar
[27] Cicoira, F., Santato, C., Melucci, M., Favaretto, L., Gazzano, M., Muccini, M., Barbarella, G., Adv. Mater., 2006, 18, 169.CrossRefGoogle Scholar
[28] Massi, M., Cavallini, M., Stagni, S., Palazzi, A., Biscarini, F., Mater. Science and Engineer. C, 2003, 23, 923.CrossRefGoogle Scholar
[29] Wang, X., Ostblom, M., Johansson, T., Inganas, O., Thin Solid Films, 2004, 449, 125.CrossRefGoogle Scholar
[30] Tedesco, E., Sala, F. Della, Favaretto, L., Barbarella, G., Albesa-Jove, D., Pisignano, D., Gigli, G., Cingolani, R., Harris, K.D.M.; J. Am. Chem. Soc., 2003, 125, 12277.CrossRefGoogle Scholar
[31] Barbarella, G.; Zambianchi, M.; Antolini, L.; Ostoja, P.; Maccagnani, P.; Bongini, A.; Marseglia, E. A.; Tedesco, E.; Gigli, G.; Cingolani, R.; J. Am. Chem. Soc.; 1999, 121, 89208926.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fabrication of Molecular Micro-NanoStructures by Surface-Tension-Driven Technique
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Fabrication of Molecular Micro-NanoStructures by Surface-Tension-Driven Technique
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Fabrication of Molecular Micro-NanoStructures by Surface-Tension-Driven Technique
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *