Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-xbbwl Total loading time: 0.276 Render date: 2021-03-08T06:18:03.929Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Fabrication of Diamond Nanopit arrays by Room-temperature Curing Nanoimprint Lithography Using Glass-like Carbon Molds

Published online by Cambridge University Press:  10 January 2012

Shuji Kiyohara
Affiliation:
Electric and Control System Engineering Course, Faculty of Advanced Engineering, Maizuru National College of Technology, 234 Aza Shiroya, Maizuru, Kyoto 625-8511, Japan
Chigaya Ito
Affiliation:
Electric and Control System Engineering Course, Faculty of Advanced Engineering, Maizuru National College of Technology, 234 Aza Shiroya, Maizuru, Kyoto 625-8511, Japan
Ippei Ishikawa
Affiliation:
Electric and Control System Engineering Course, Faculty of Advanced Engineering, Maizuru National College of Technology, 234 Aza Shiroya, Maizuru, Kyoto 625-8511, Japan
Hirofumi Takikawa
Affiliation:
Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
Yoshio Taguchi
Affiliation:
Application and Technical Section, ELIONIX INC., 3-7-6 Motoyokoyama, Hachioji, Tokyo 192-0063, Japan
Yoshinari Sugiyama
Affiliation:
Application and Technical Section, ELIONIX INC., 3-7-6 Motoyokoyama, Hachioji, Tokyo 192-0063, Japan
Yukiko Omata
Affiliation:
Application and Technical Section, ELIONIX INC., 3-7-6 Motoyokoyama, Hachioji, Tokyo 192-0063, Japan
Yuichi Kurashima
Affiliation:
Department of Mechanical System Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
Get access

Abstract

We have proposed the use of glass-like carbon (GC), as mold material because the 27-maximum etching selectivity of polysiloxane film against GC, which was approximately sixtimes larger than that of polysiloxane film against chemical vapor deposited (CVD) diamond film. We have investigated the fabrication of diamond nanopit arrays by room-temperature curing nanoimprint lithography (RTC-NIL) using GC mold, as applications to the emitter and the micro-gear. The polysiloxane has in the state of sticky liquid at room-temperature and negative-exposure characteristic. Therefore, the polysiloxane was used as RTC-imprint resist material, and also used as electron beam (EB) resist (oxide mask) material in EB lithography. We have fabricated the cylindrical GC nanodot mold with 500 nm-diameter, 600 nm-height and 2 μm-pitch. We carried out RTC-NIL using GC mold under the following optimum conditions: time from spin-coating to imprint of 1 min, imprinting pressure of 0.5 MPa and imprinting time of 5min. Then, we have processed the diamond film with an electron cyclotron resonance (ECR) oxygen ion shower. We have fabricated diamond nanopit array with 250 nm-depth and 500 nm-diameter. The diameter of diamond nanopit pattern was in good agreement with that of GC mold. Moreover, the depth of the diamond nanopit patterns fabricated by RTC-NIL using cylindrical GC mold was three times larger than that using conical diamond mold.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Kim, K. D., Jeong, J. H., Park, S. H., Choi, D. G., Choi, J. H. and Lee, E. S., Microelectron. Eng. 86, 1983 (2009).CrossRefGoogle Scholar
2. Youn, S. W., Takahashi, M., Goto, H., Maeda, R., J. Mater. Process. Technol. 187, 326 (2007).CrossRefGoogle Scholar
3. Zhang, Y., Lu, J., Shimano, S., Zhou, H., Maeda, R., Electrochem. Commun. 9, 1365 (2007).CrossRefGoogle Scholar
4. Youn, S. W., Ogiwara, M., Goto, H., Takahashi, M. and Maeda, R., J. Mater. Process. Technol. 202, 76 (2008).CrossRefGoogle Scholar
5. Takazawa, N., Yamanoi, T., Iizuka, K., Hiraide, T., Yoshiawa, H., Ando, Y., Mita, M., Oi, H., Takahashi, M. and Yoshimoto, M., Diamond Relat. Mater. 20, 866 (2011) .CrossRefGoogle Scholar
6. McClelland, G. M., Hart, M. W., Rettner, C. T., Best, M. E., Carter, K. R. and Terris, B. D., Appl. Phys. Lett. 81, 1483 (2002).CrossRefGoogle Scholar
7. Kiyohara, S., Taguchi, Y. and Takikawa, H. et al. , in Diamond Nanopit Arrays Fabricated by Room-Temperature Nanoimprinting using Diamond Molds, edited by Nebel, C. E., Bergonzo, P. and Butle, J. E., (Mater. Res. Symp. Proc. 1282, Boston, MA, 2010) pp. 117-122.Google Scholar
8. Kiyohara, S., Kashiwagi, T., Takikawa, H., Kurashima, Y., Taguchi, Y. and Sugiyama, Y, e-J.Surface Sci. and Nanotech. 7, 772 (2009).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 11 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 8th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fabrication of Diamond Nanopit arrays by Room-temperature Curing Nanoimprint Lithography Using Glass-like Carbon Molds
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Fabrication of Diamond Nanopit arrays by Room-temperature Curing Nanoimprint Lithography Using Glass-like Carbon Molds
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Fabrication of Diamond Nanopit arrays by Room-temperature Curing Nanoimprint Lithography Using Glass-like Carbon Molds
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *