Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-8zwnf Total loading time: 0.674 Render date: 2022-12-06T17:49:26.349Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Exploring Complex Chalcogenides for Thermoelectric Applications

Published online by Cambridge University Press:  01 February 2011

Ying C. Wang
Affiliation:
Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY 14853, USA
Francis J. DiSalvo
Affiliation:
Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY 14853, USA
Get access

Abstract

Our research on ternary / quaternary chalcogenides for thermoelectric applications has lead to the identification of new interesting compounds and better understanding of the chemistry and physical properties of complex chalcogenides. The chemical, geometric, electronic diversity and flexibility has been well demonstrated in BaBiSe3 and Sr4Bi6Se13 type compounds. This presents both a challenge and more opportunity in controlling and optimizing the thermoelectric properties of these complex chalcogenides, compared with elemental and binary compounds. The importance of multivalley band structure in thermoelectric materials is emphasized. Only compounds with high crystal symmetry have the possibility of having a large number of degenerate valleys in the conduction bands or peaks in the valence bands, respectively. However, most of the complex chalcogenides crystallize in low crystal symmetry. An Edisonian method of exploratory synthesis and characterization may be the working approach to find good thermoelectric materials with ZT higher than 4.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. DiSalvo, I. F. J., Science 285, 703 (1999).Google Scholar
2 Mahan, G., Sales, B., Sharp, J., Phys. Today 50, 42 (1997).CrossRefGoogle Scholar
3. Sales, B., Mater. Res. Soc. Bull. 23, 15 (1998).CrossRefGoogle Scholar
4. Tritt, T. M., Science 272, 1276 (1996).CrossRefGoogle Scholar
5. CRC Handbook of Thermoelectrics, ed. Rowe, D. M. (CRC Press, Boca Raton, FL, 1995).CrossRefGoogle Scholar
6. Wood, C., Rep. Prog. Phys. 51, 459 (1988).CrossRefGoogle Scholar
7. Mahan, G. D., Solid State Phys. 51, 82 (1998).Google Scholar
8. Goldsmid, H. J., Electronic Refrigeration (Pion, London, 1986).Google Scholar
9. Chung, D. -Y., Iordanidis, L., Rangan, K. K., Brazis, P. W., Kannewurf, C. R., and Kanatzidis, M. G., Chem. Mater. 11, 1352 (1999).CrossRefGoogle Scholar
10. Chung, D. -Y., Choi, K. -S., Iordanidis, L., Schindler, J. L., Brazis, P. W., Kannewurf, C. R., Chen, B., Hu, S., Uher, C., Kanatzidis, M. G., Chem. Mater. 9, 3060 (1997).CrossRefGoogle Scholar
11. Duck, D. -Y., Jobic, S., Hogan, T., Kannewurf, C. R., Brec, R., Rouxel, J., Kanatzidis, M. G., J. Am. Chem. Soc. 119, 2505 (1997).Google Scholar
12. Volk, K., Cordier, G., Cook, R., Schäfer, H., Z. Naturforsch. 35B, 136 (1980).CrossRefGoogle Scholar
13. Choi, K. -S., Iordanidis, L., Chondroudis, K., Kanatzidis, M. G., Inorg. Chem. 36, 3804 (1997).CrossRefGoogle Scholar
14. McCarthy, T. J., Tanzer, T. A., Kanatzidis, M. G., J. Am. Chem. Soc. 117, 1294 (1995).CrossRefGoogle Scholar
15. Chen, J. H. and Dorhout, P. K., J. Alloys Comp. 249, 199 (1997).CrossRefGoogle Scholar
16. Duck, D. -Y., Hogan, T., Brazis, P., Rocci-Lane, M., Kannewurf, C., Bastea, M., Uher, C., Kanatzidis, M. G., Science 287, 1024 (2000).Google Scholar
17. Cordier, G., Schäfer, H., Schwidetzky, C., Revue de Chimie minérale 22, 631 (1985).Google Scholar
18. Wang, Y. C. and DiSalvo, F. J., Chem. Mater. 12, 1011 (2000).CrossRefGoogle Scholar
19. (a) Wang, Y. C., PhD dissertation, Cornell University, 2000, to be published. (b) Y. C. Wang, R. Hoffmann, F. J. DiSalvo, results to be published.Google Scholar
20. Kanatzidis, M. G., MaCarthy, T. J., Tanzer, T. A., Chen, L. -H., Iordanidis, L., Hogan, T., Kannewurf, C. R., Uher, C., Chen, B., Chem. Mater. 8, 1465 (1996).CrossRefGoogle Scholar
21. Iordanidis, L., Brazis, P. W., Kannewurf, C. R., Kanatzidis, M. G., MRS 1998 Fall Meeting-SymposiumZ4.30, Boston, MA, USA.Google Scholar
22. Cracknell, A. P., J. Phys. C: Solid State Phys. 6, 826 (1973).CrossRefGoogle Scholar
23. Altmann, S. L., Band Theory of Solids: An Introduction from the Point of View of Symmetry (Clarendon Press, Oxford, 1995), Chap 6.Google Scholar
24. ICSD/RETRIEVE 2.01, Gmelin Institute / Fiz Karlsruhe, Release February 1998.Google Scholar
25. Aurivillius, B., Acta Chem. Scand. 37A, 399 (1983).CrossRefGoogle Scholar
26. Wang, Y. C., Hoffmann, R., DiSalvo, F. J., J. Solid State Chem., submitted.Google Scholar
27. Post, E. and Krämer, V., Mater. Res. Bull. 19, 1607 (1984).Google Scholar
28. Poduska, K. M. and DiSalvo, F. J., results to be published.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Exploring Complex Chalcogenides for Thermoelectric Applications
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Exploring Complex Chalcogenides for Thermoelectric Applications
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Exploring Complex Chalcogenides for Thermoelectric Applications
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *