Skip to main content Accessibility help
×
Home

Exfoliated ∼25μm Si Foil for Solar Cells with Improved Light-Trapping

Published online by Cambridge University Press:  25 February 2013

S. Saha
Affiliation:
Department of Electrical and Computer Engineering, University of Texas, Austin, TX 78758.
E. U. Onyegam
Affiliation:
Department of Electrical and Computer Engineering, University of Texas, Austin, TX 78758.
D. Sarkar
Affiliation:
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611.
M. M. Hilali
Affiliation:
Department of Electrical and Computer Engineering, University of Texas, Austin, TX 78758.
R. A. Rao
Affiliation:
AstroWatt, Inc.Austin, TX 78758
L. Mathew
Affiliation:
AstroWatt, Inc.Austin, TX 78758
D. Jawarani
Affiliation:
AstroWatt, Inc.Austin, TX 78758
D. Xu
Affiliation:
AstroWatt, Inc.Austin, TX 78758
R. S. Smith
Affiliation:
AstroWatt, Inc.Austin, TX 78758
U. K. Das
Affiliation:
Institute of Energy Conversion, University of Delaware, Newark, DE 19716
J. G. Fossum
Affiliation:
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611.
S. K. Banerjee
Affiliation:
Department of Electrical and Computer Engineering, University of Texas, Austin, TX 78758.
Get access

Abstract

Investigation of optical absorption in ∼25μm thick, monocrystalline silicon (Si) substrates obtained from a novel exfoliation technique is done by fabricating solar cells with single heterojunction architecture (without using intrinsic amorphous silicon layer) with diffused back junction and local back contact. The ease of process flow and the rugged and flexible nature of the substrates due to thick metal backing enables use of various light-trapping and optical absorption enhancement schemes traditionally practiced in the industry for thicker (>120μm) substrates. Optical measurement of solar cells using antireflective coating, texturing on both surfaces, and back surface dielectric/metal stack as mirror to reflect the long wavelength light from the back surface show a very low front surface reflectance of 4.6% in the broadband spectrum (300nm-1200nm). The illuminated current voltage (IV) and external quantum efficiency (EQE) measurement of such solar cell shows a high integrated current density of 34.4mA/cm2, which implies significant internal photon reflection. Our best cell with intrinsic amorphous silicon (i-a-Si) layer with only rear surface textured shows an efficiency of 14.9%. EQE data shows improved blue response and current density due to better front surface passivation. Simulations suggest that with optimized light trapping and surface passivation, such thin c-Si cells can reach efficiencies >20%.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below.

References

Honsberg, C., Goodnick, S., and Bowden, S., (International Photovoltaic Reliability Workshop, Tempe, 2009) pp. 28.
Green, M.A., Blakers, A., Jiqun, Shi, Keller, E.M. and Wenham, SR, IEEE Trans. Electron Devices ED-31, 679683(1984).CrossRef
Tiedje, T., Yablonovitch, E., Cody, G. D., and Brooks, B. G., IEEE Trans. Electron Devices, ED-31, 711716 (1984).CrossRef
Yablonovitch, E., Cody, G. D., IEEE Trans. Electron Devices ED-29, 300305 (1982).CrossRef
Sakata, H., Tsunomura, Y., Inoue, H., Taira, S., Baba, T., Kanno, H., Kinoshita, T., Taguchi, M., and Maruyama, E., (Proc. 25th EU PVSEC, Valencia, 2010) pp. 1102–1105.
Brendel, R., “Thin-film crystalline silicon solar cells: Physics and Technology”, (Weinheim: Wiley-VCH, 2003) pp. 1223.CrossRefGoogle Scholar
Brendel, Rolf, Solar Energy 77, 969982 (2004).CrossRef
Hebling, C., Glunz, S. W., Schumacher, J. O., and Knobloch, J., (Proc. 14th EU PVSEC, Barcelona, 1997) pp. 2318–2321.
Van Nieuwenhuysen, K., Récaman Payo, M., Kuzma-Filipek, I., Van Hoeymissen, J., Van Kerschaever, E., and Poortmans, J., (Proc. 35th IEEE PVSC, Philadelphia, 2009) pp. 000933–000936.
Green, M.A., Basore, P. A., Chang, N., Clugston, D., Egan, R., Evans, R., Hogg, D., Jarnason, S., Keevers, M., Lasswell, P., O’Sullivan, J., Schubert, U., Turner, A., Wenham, S. R., and Young, T., Solar Energy 77, 857863 (2004).CrossRef
Mathew, L. and Jawarani, D., U.S. Patent no. 7749884 (July 6, 2010).
Dross, F., Milhe, A., Robbelein, J., Gordon, I., Bouchard, P., Beaucarne, G., Poortmans, J., App. Phy. A: Mat. Sc. and Proc. 89, 149152 (2007).CrossRef
Henley, F. J., (Proc. PVSC, Honolulu, 2010) pp. 001184–001192.
Rao, R. A., Mathew, L., Saha, S., Smith, S., Sarkar, D., Garcia, R., Stout, R., Gurmu, A., Ahn, D., Xu, D., Jawarani, D., Onyegam, E., Hilali, M., Banerjee, S. K., and Fossum, J., (Proc. EU PVSEC, Hamburg, 2011) pp. 2439–2442.
Rao, R. A., Mathew, L., Sarkar, D., Smith, S., Saha, S., Garcia, R., Stout, R., Gurmu, A., Ainom, M., Onyegam, E., Xu, D., Jawarani, D., Fossum, J., Banerjee, S. K., Das, U. K., Upadhyaya, A., Rohatagi, A., and Wang, Q., (Proc. 38th IEEE PVSC, Austin, 2012) pp. 001837–001840.
Xu, D., Ho, P. S., Rao, R. A., Mathew, L., Smith, S., Saha, S., Sarkar, D., Vaas, C., and Jawarani, D., (Proc. Reliability Physics Symposium (IRPS), Anaheim, 2012) pp. 4A3.1-4A3.7.
Fossum, J. G., Sarkar, D., Mathew, L., Rao, R., Jawarani, D., and Law, M. E., “Back-contact solar cells in thin crystalline silicon, (Proc. 35th IEEE PVSC, Honolulu, 2010) pp. 3131–3136. CrossRef
Law, M. E., and Cea, S. M., Computational Materials Science 12, 289308 (1998).CrossRef
Fossum, J. G., and Shibib, M. A., IEEE Trans. Electron Devices ED-28, 10181025 (1981).CrossRef
Zhao, J., Wang, A., Altermatt, P. P., Wenham, S. R., and Green, M. A., Solar Energy Mater. Solar Cells 4142, 8799 (1996).CrossRef
Cuevas, A., Basore, P. A., Giroult-Maltakowski, G., and Dubois, C., J. Appl. Phys. 80, 33703375 (1996).CrossRef
Taguchi, M., Terakawa, A., Maruyama, E., and Tanaka, M., Prog. Photovoltaics: Res. Appl. 13, 481488 (2005).CrossRef
Cuevas, A, and , D. A, Russell, , Prog. Photovoltaics: Res. Appl. 8, 603616 (2000).3.0.CO;2-M>CrossRef
Swanson, R. M., (Proc. IEEE Electron Devices Meeting, Dec. 2007) pp. 359–362.

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 11 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 16th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-6mlss Total loading time: 0.367 Render date: 2021-01-16T00:42:54.792Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Fri Jan 15 2021 23:51:27 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Exfoliated ∼25μm Si Foil for Solar Cells with Improved Light-Trapping
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Exfoliated ∼25μm Si Foil for Solar Cells with Improved Light-Trapping
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Exfoliated ∼25μm Si Foil for Solar Cells with Improved Light-Trapping
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *