Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-10T06:24:44.514Z Has data issue: false hasContentIssue false

Evolution Of Defects Induced By High Energy He Implantation In Gold-Diffused Silicon

Published online by Cambridge University Press:  21 March 2011

R. El Bouayadi
Affiliation:
Laboratoire TECSEN, Aix-Marseille III, Service 151, Marseille, F-13397
G. Regula
Affiliation:
Laboratoire TECSEN, Aix-Marseille III, Service 151, Marseille, F-13397
B. Pichaud
Affiliation:
Laboratoire TECSEN, Aix-Marseille III, Service 151, Marseille, F-13397
M. Lancin
Affiliation:
Laboratoire TECSEN, Aix-Marseille III, Service 151, Marseille, F-13397
J. J. Simon
Affiliation:
Laboratoire TECSEN, Aix-Marseille III, Service 151, Marseille, F-13397
E. Ntsoenzok
Affiliation:
CERI-CNRS, 3A, rue de la Férollerie, Orléans cedex, F-45071
Get access

Abstract

Silicon samples were gold-diffused at different temperatures, implanted with He ions at 1.6 MeVand then annealed at 1050°C for 2 hours. The implantation induced-defect structure and their distributionin the depth of the sample, studied by conventional and high resolution cross section electron microscopy (HRXTEM) depend on the gold level introduced in the wafer prior to the gettering process. A high concentration of gold in silicon seems to influence the defect configuration in the cavity zone. Indeed, gold chemisorbed atcavities can homogenize the surface energy of their planes in different orientations, and can increase the cavity critical diameter beyond they become facetted. Secondary ion mass spectroscopy (SIMS) profiles exhibit ashouldered shape and a width closely related to the presence of the defects (observed by XTEM) which are veryefficient sinks both for gold and copper atoms. Unfortunately, the electrical improvement of the material (checked by minority carriers diffusion length measurements MCDL) is not achieved by this gettering process, probably due to the high metal impurity concentrations remaining out of the gettering zone, to the presence of AuCu complexes and η-Cu3Si precipitates identified by deep level transient spectroscopy (DLTS)measurements and HRXTEM observations respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Seidel, T.E, MRS 1986 Symp. Proc. 3, (1986)Google Scholar
[2] Schröter, W., Seibt, M. and Gilles, D., Materials Science and Technology Eds. Cahn, R.W., Haasen, P. and Kramer, E.J., VHC Weinheim 1991 Vol. 4, (pp 539587)Google Scholar
[3] Skorupa, W., Hatzopoulos, N., Yankov, R.A. and Danilin, A. B., Appl. Phys. Lett. 67, 20 (1995)Google Scholar
[4] Cacciato, A., Camalleri, C.M., Franco, G., Raineri, V. and Coffa, S., J. Appl. Phys. 80, 8 (1996)Google Scholar
[5] Petersen, G.A., Myers, S.M. and Follstaedt, D.M., Nucl. Instr. and Meth. in Phys. Res. B 127/128, 301 (1997)Google Scholar
[6] Wong-leung, J., Ascheron, C.E., Petravic, M., Elliman, R.G. and Williams, J.S., Appl. Phys. Lett. 66, 1231 (1995)Google Scholar
[7] Raineri, V., Fallica, P.G., Percolla, G., Battaglia, A., Barbagallo, M. and Campisano, S.U., J. Appl. Phys. 78, 3727 (1995)Google Scholar
[8] Fichner, P.F.P., Kaschny, J.R., Yankov, R.A., Mücklich, A., Kreissig, U. and Skorupa, W., Appl. Phys. Lett. 70, 732 (1997)Google Scholar
[9] Myers, S.M. and Follstaedt, D.M., J. Appl. Phys. 79, 1337 (1996)Google Scholar
[10] Mariani-regula, G., Pichaud, B., Godey, S., Ntsoenzok, E., Perner, O. and bouayadi, R. El, Mat. Sci. and Engineer. B, 71, 203 (2000)Google Scholar
[11] Stolvijk, N.A., Bracht, H., ‘diffusion in silicon, germanium and their alloys’ ed., landotBörnstein New Series III/33A p 196.Google Scholar
[12] Graff, K., Metal Impurities in Silicon-Device Fabrication, Springer Series in Materials Science, Eds. Queisser, H. J., Springer-Verlag Berlin Heidelberg 1995 Google Scholar
[13] Hauber, J., Stolwijk, N.A., Tapfer, L., Mehrer, H. and Frank, W., J. Phys. C, 19, 5817 (1986)Google Scholar
[14] Boström, O., Pichaud, B., Regula, M., Bajard, J. C., Blondiaux, G., Soltanovich, O. A., Yakimov, E. B., Lhorte, A., and Quoirin, J. B., Mat. Sci. and Engineer. B, 71, 166 (2000)Google Scholar
[15] Wong-leung, J., Nygren, E. and Williams, J.S., Appl. Phys. Lett. 67, 416 (1995)Google Scholar