Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T20:54:05.241Z Has data issue: false hasContentIssue false

Epitaxial growth studies of InSb on CdTe: Kinetic and thermodynamic aspects of InSb/CdTe interface formation

Published online by Cambridge University Press:  25 February 2011

T. D. Golding
Affiliation:
Space Vacuum Epitaxy Center and Department of Physics, University of Houston, Houston 7X 77204
J. Strozier
Affiliation:
Empire State College, State University of New York, Stony Brook, NY 11790 G.M. Williams, A.G. Cullis, and C.R. Whitehouse Royal Signals and Radar Establishment, St Andrews Road, Malvern, WR14 3PS, U.K
J.H. Dinan
Affiliation:
U.S. Army Center for Night Vision and Electro-Optics, AMSEL-RD-NV-JT, Fort Belvoir, VA 22060
D. Zahn
Affiliation:
Technische Universitat Berlin, -Sekr. PN 6-1, Hardenbergstrabe3 6, D-1000, Berlin 12, Germany
Get access

Abstract

We report studies of the interface formed when InSb is deposited onto a CdTe substrate in a molecular beam epitaxy chamber and elucidate conditions under which epitaxial growth is possible. We find that a necessary condition for epitaxy at a substrate temperature Ts is that the growth rate exceed a minimum value Ωmin(Ts). Reflection high energy electron diffraction patterns taken in situ and transmission electron micrographs taken ex situ show that interfaces formed when Ω > Ωmin have a short period roughness which is independent of the Sb/In flux ratio and which diminishes with increasing Ω. Raman spectra show no evidence of interfacial compounds. An analysis of Auger spectra of thin layers of InSb grown on CdTe indicates the existence of Te at the surface of the InSb but not in the layer itself. The Te concentration is found to decrease with InSb layer thickness. We propose a model based on a competition between the reaction of free In and Sb with the CdTe surface and the nucleation and growth of InSb. We use this model to account for the existence of Omin, interface roughness, and the presence of Te at the surface of the InSb epilayer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Farrow, R. F.C., Jones, G.R., Williams, G.H., and Young, I.M., Appl.Phys. Lett. 39, 954 (1981)Google Scholar
2 Welzenis, R.G.van and Ridley, B.K., Solid State Electronics, 27, No.2 113 (1984).Google Scholar
3 Mackey, K.J., Zahn, D.R.T., Allen, P.M.G., Williams, R.H., Richter, W., and , R.S , Williams, J. Vac. Sci. Tech B5, 1233 (1987).CrossRefGoogle Scholar
4 Golding, T. D., Martinka, M., and Dinan, J.H.. J.Appl. Phys. 64(4) 1873 (1988).CrossRefGoogle Scholar
5 Zahn, D.R.T., Williams, R.H., Golding, T.D., Dinan, J.H., Mackey, K.J., Geurts, J., and Richter, W., Appl.Phys. Lett. 53 (24) 2409 (1988).CrossRefGoogle Scholar
6 Williams, G.M., Whitehouse, C.R., Martin, T., Chew, N.G., Cullis, A.G., Ashley, T., Sykes, D.E., Mackey, K.J., and Williams, R.H. J. Appl. Phys. 63 1526 (1988).Google Scholar
7 Golding, T.D., Greene, S.K., Pepper, M., Dinan, J.H., Cullis, A.G., Williams, G.M., and Whithouse, C.R., Semicond. Sci. Technol. 5, S311, (1990).CrossRefGoogle Scholar
8 Greene, S.K., Singleton, J., Golding, T.D., Pepper, M., Langerak, C.J.G.M. and Dinan, J.H.. Surface Science 228 542 (1990).Google Scholar
9 Williams, G.M., Cullis, A.G., Barnett, S.J., Whitehouse, C.R., Golding, T.D., and Dinan, J.H., J. Vac. Sci. Tech. A9 (1) 71 (1991).Google Scholar
10 Glenn, J.L., Sungki 0, Kolodziejski, L.A., Gunshor, R.L., Kobayashi, N., Li, D., Otsuka, N., Haggerott, M., Pelekanos, N., and Nurmikko, A.V.. J. Vac. Sci. Tech. B7, 249 (1989).Google Scholar
11 Gunshor, R.L., Kolodziejski, L.A., Nurmikko, A.V., and Otsuka, N.. Semiconductors and Semimetals; Strained Layer Superlattices, edited by Pearsall, P.P. (Academic, New York, 1990).Google Scholar
12 van, R.G. Welzenis, Setten, F.M. van, and Schannen, O.F.Z.. Appl. Phys. A 52 19 (1991)Google Scholar
13 Zahn, D.R.T., Mackey, K.J., Williams, R.H., Munder, H., Geurts, J., and Richter, W.; Appl. Phys. Lett. 50, 742 (1987).CrossRefGoogle Scholar
14 Cullis, A.G., Chew, N.G., and Hutchison, J.L.. Ultramicroscopy 17, 203, (1985).Google Scholar
15 Barnett, S.J., Golding, T.D., Macdonald, J.E., Conway, K.M., Whitehouse, C.R., and Dinan, J.H.. Inst. Phys. Conf. Ser. 100, 485, (1989).Google Scholar
16 Barin, I., Knacke, O., Kubascherski, O.: Thermal Chemical Properties of Inorganic Substances (Springer, Berlin, Heidelberg 1979).Google Scholar