Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-vddjc Total loading time: 0.242 Render date: 2021-04-15T15:17:18.549Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Emission Diversity of ZnO Nanocrystals with Different Growth Temperatures

Published online by Cambridge University Press:  29 August 2014

E. Velázquez Lozada
Affiliation:
SEPI – ESIME – INSTITUTO POLITECNICO NACIONAL, México D. F. 07738, México.,
T. Torchynska
Affiliation:
ESFM – INSTITUTO POLITECNICO NACIONAL, México D. F. 07738, México.
G. Camacho González
Affiliation:
ESIME – INSTITUTO POLITECNICO NACIONAL, México D. F. 07738, México.
Corresponding
E-mail address:
Get access

Abstract

Scanning electronic microscopy (SEM), X ray diffraction (XRD) and photoluminescence (PL) have been applied to the study of structural and optical properties of ZnO nanocrystals prepared by the ultrasonic spray pyrolysis (USP) at different temperatures. The variation of temperatures and times at the growth of ZnO films permits modifying the ZnO phase from the amorphous to crystalline, to change the size of ZnO nanocrystals (NCs), as well as to vary their photoluminescence spectra. The study has revealed three types of PL bands in ZnO NCs: defect related emission, the near-band-edge (NBE) PL, related to the LO phonon replica of free exciton (FE) recombination, and its second-order diffraction peaks. The PL bands, related to the LO phonon replica of FE, and its second-order diffraction in the room temperature Pl spectrum testify on the high quality of ZnO films prepared by the USP technology.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below.

References

Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., Steiner, T., Prog. Mater. Sci. 50, 293 (2005).CrossRef
Koch, M.H., Timbrell, P.Y., Lamb, R.N., Semicond. Sci. Technol. 10, 1523 (1995).CrossRef
Vanheusden, K., Seager, C.H., Wareen, W.L., Tallant, D.R., Caruso, J., Hampden-Smith, M.J., Kodas, T.T., J. Lumin. 75, 11 (1997)CrossRef
Yang, Z.K., Yu, P., Wong, G.L., Kawasaki, M., Ohtomo, A., Koinuma, H., Segawa, Y., Solid State Commun. 103, 459 (1997).
Alvi, N.H., Usman Ali, S.M., Hussain, S., Nur, O. and Willander Scripta, M. Materialia 64, 697 (2011).
Huang, M.H., Mao, S., Feick, H., Science 292, 1897 (2001).CrossRef
Scheer, R., Walter, T., Schock, H.W., Fearheiley, M.L., Lewerenz, H.J., Appl. Phys. Lett. 63, 3294 (1993).CrossRef
Chen, Y., Baghall, D.M., Koh, H., Park, K., Hiraga, K., Zhu, Z., Yao, T., J. Appl. Phys. 84, 3912 (1998).CrossRef
Li, Y.B., Bando, Y., Golberg, D., Appl. Phys. Lett. 84, 3603 (2004).CrossRef
Ding, J., McAvoy, T.J., Cavicchi, R.E., Semancik, S., Sens. Actuat. B 77, 597 (2001).CrossRef
Dybic, M., Ostapenko, S., Torchynska, T.V., Velazquez Lozada, E., Appl. Phys. Lett. 84(25), 5165 (2004)CrossRef
Torchynska, T. V., Diaz Cano, A.I., Dybic, M., Ostapenko, S., Mynbaeva, M., Physica B, Condensed Matter, 376377, 367 (2006)CrossRef
PDF2 XRD database, card no. 36–1451.
Djuris, A. B., Ng, A.M.C., Chen, X.Y.. Progress in Quantum Electronics 34. 191259 (2010).CrossRef
Korsunskaya, N.E., Markevich, I.V., Torchinskaya, T.V. and Sheinkman, M.K., J. Phys. Chem. Solid. 43, 475479 (1982).
Korsunskaya, N.E., Markevich, I.V., Torchinskaya, T.V. and Sheinkman, M.K., J. Phys. C. Solid St.Phys. 13, 29752982 (1980).CrossRef
Korsunskaya, N.E., Markevich, I.V., Torchinskaya, T.V. and Sheinkman, M.K., phys. stat. sol (a), 60, 565572 (1980).CrossRef
Reshchikova, M.A., Morkoc, H., Nemeth, B., Nause, J., Xie, J., Hertog, B., Osinsky, A., Physica B, Condensed Matter, 401402, 358361 (2007).CrossRef
Patra, M.K., Manzoor, K., Manoth, M., Vadera, S.P., Kumar, N., Lumin, J.. 128(2) 267272 (2008).CrossRef
Zhang, D.H., Xue, Z.Y., Wang, Q.P., J. Phys. D: Appl. Phys. 35(21) 28372840 (2002).CrossRef
Djurišic, A.B., Choy, W.C.H., Roy, V.A.L., Leung, Y.H., Kwong, C.Y.. Cheah, K.W., Gundu Rao, T.K., Chan, W.K., Lui, H.F., Surya, C., Adv. Funct. Mater. 14 856864 (2004).CrossRef
Liu, X., Wu, X., Cao, H., Chang, R.P.H., J. Appl. Phys. 95(6) 31413147 (2004).CrossRef
Qiu, J., Li, X., He, W., Park, S.-J., Kim, H.-K., Hwang, Y.-H., Lee, J.-H., Kim, Y.-D., Nanotechnology 20 155603 (2009).CrossRef
Look, D.C., Reynolds, D.C., Litton, C.W., Jones, R.L., Eason, D.B., Cantwell, G., Appl. Phys. Lett. 81, 1830 (2002).CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 7 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 15th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Emission Diversity of ZnO Nanocrystals with Different Growth Temperatures
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Emission Diversity of ZnO Nanocrystals with Different Growth Temperatures
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Emission Diversity of ZnO Nanocrystals with Different Growth Temperatures
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *