Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-f64jw Total loading time: 1.276 Render date: 2021-04-17T09:30:17.975Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Electronic and Mechanical Properties of Super Carbon Nanotube Networks

Published online by Cambridge University Press:  01 February 2011

Vitor R. Coluci
Affiliation:
coluci@ifi.unicamp.br, IFGW-UNICAMP, Campinas - Sao Paulo 13081, Brazil
Socrates O. Dantas
Affiliation:
dantas@fisica.ufjf.br, Dpto. Fisica - UFJF, Juiz de Fora - MG, 36036, Brazil
Ado Jorio
Affiliation:
adojorio@mgm.mit.edu, Dpto. Fisica - UFMG, Belo Horizonte, 30123, Brazil
Douglas s Galvao
Affiliation:
galvao@ifi.unicamp.br, IFGW-UNICAMP, Campinas - Sao Paulo, 13081, Brazil
Get access

Abstract

Eletronic and mechanical properties of ordered carbon nanotube networks are studied using molecular dynamics simulations and tight-binding calculations. These networks are formed by single walled carbon nanotubes (SWNT) regularly connected by junctions. The use of different types of junctions (“Y”-, “X”-like junctions, for example) allows the construction of networks with different symmetries. These networks can be very flexible and the elastic deformation was associated with two main deformation mechanisms (bending and stretching ) of the constituents SWNTs. Rolling up the networks, “super” carbon nanotubes can be constructed. These super-tubes share some of the main electronic features of the SWNT which form them but important changes are predicted (e.g. reduction of bandgap value). Simulations of their deformations under tensile stress have revealed that the super-tubes are softer than the corresponding SWNT and that their rupture occur in higher strain values.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Saito, R., Dresselhaus, G., Dresselhaus, M. S., Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998.10.1142/p080CrossRefGoogle Scholar
2. Zhang, Y., Chang, A., Cao, J., Wang, Q., Kim, W., Li, Y., Morris, N., Yenilmez, E., Kong, J., Dai, H.,, Appl. Phys. Lett. 79, 3155 (2001).10.1063/1.1415412CrossRefGoogle Scholar
3. Snow, E. S., Novak, J. P., Campbell, P. M., Park, D., Appl. Phys. Lett. 82, 2145 (2003).CrossRefGoogle Scholar
4. Snow, E. S., Novak, J. P., Lay, M. D., Houser, E. H., Perkins, F. K., Campbell, P. M., J.Vac. Sci. Technol. B 22, 1990 (2004).CrossRefGoogle Scholar
5. Jung, Y. J., Homma, Y., Ogino, T., Kobayashi, Y., Takagi, D., Wei, B., Vajtai, R., Ajayan, P. M., J.Chem. Phys. 107, 6859 (2003).CrossRefGoogle Scholar
6. Cassel, A. M., McCool, G. C., Ng, H. T., Koehne, J. E., Chen B, B., Li, J., Han, J., Meyyappan, M., Appl. Phys. Lett. 82, 817 (2003).CrossRefGoogle Scholar
7. Diehl, M. R., Yaliraki, S. N., Beckman, R. A., Barahoma, M., Heath, J. R., Angew. Chem. 114, 363 (2002).3.0.CO;2-I>CrossRefGoogle Scholar
8. Derycke, V., Martel, R., Radosavljevic, M., Ross, F. M., Avouris, Ph., Nano Lett. 2, 1043 (2002).10.1021/nl0256309CrossRefGoogle Scholar
9. Ago, H., Nakamura, K., Ikeda, K., Uehara, N., Ishigami, N., Tsuji, M., Chem. Phys. Lett. 408, 433 (2005).CrossRefGoogle Scholar
10. Ismach, A., Kantorovich, D., Joselevich, E., J. Am. Chem. Soc. 127, 11554 (2005).CrossRefGoogle Scholar
11. Ismach, A., Joselevich, E., Nano Lett. 6, 1706 (2006).CrossRefGoogle Scholar
12. Terrones, M., Banhart, F., Grobert, N., Charlier, J. C., Terrones, H., Ajayan, P. M., Phys. Rev. Lett. 89, 075505 (2002).CrossRefGoogle Scholar
13. Coluci, V. R., Galvao, D. S., Jorio, A., Nanotech. 17, 617 (2006).CrossRefGoogle Scholar
14. Zsoldos, I., Kakuk, G., Reti, T., Szasz, A., Mod. Sim. Mater. Sci. Eng. 12, 1251 (2004).CrossRefGoogle Scholar
15. Stuart, S. J., Tutein, A. B., Harrison, J. A., J. Chem. Phys. 112, 6472 (2000).CrossRefGoogle Scholar
16. Brenner, D. W., Phys. Rev. B 42, 9458 (1990); D. W. Brenner, O. A. Shenderova, J.A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002).CrossRefGoogle Scholar
17. Coluci, V. R., Dantas, S. O., Galvao, D. S., Jorio, A., submitted.Google Scholar
18. Porezag, D., et al., Phys. Rev. B 51 12947 (1995).CrossRefGoogle Scholar
19. Rurali, R., Hernandez, E., Comput. Mat. Sci. 28, 85 (2003).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 7 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 17th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Electronic and Mechanical Properties of Super Carbon Nanotube Networks
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Electronic and Mechanical Properties of Super Carbon Nanotube Networks
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Electronic and Mechanical Properties of Super Carbon Nanotube Networks
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *