Skip to main content Accessibility help
×
Home

Electronic and Mechanical Coupling in Elastically Bent ZnO Micro/Nanowires

Published online by Cambridge University Press:  18 March 2014

Xuewen Fu
Affiliation:
State Key Laboratory for Mesoscopic Physics, and Electron Microscopy Laboratory, Department of Physics, 209 Chengfu Road, Peking University, Beijing 100871, China
Zhimin Liao
Affiliation:
State Key Laboratory for Mesoscopic Physics, and Electron Microscopy Laboratory, Department of Physics, 209 Chengfu Road, Peking University, Beijing 100871, China
Dapeng Yu
Affiliation:
State Key Laboratory for Mesoscopic Physics, and Electron Microscopy Laboratory, Department of Physics, 209 Chengfu Road, Peking University, Beijing 100871, China
Corresponding
E-mail address:
Get access

Abstract

Elastic engineering strain has been regarded as a low-cost and continuously variable manner for altering the physical and chemical properties of materials, and it becomes even more important at low-dimensionality because at micro/nanoscale, materials/structures can usually bear exceptionally high elastic strains before failure. The elastic strain effects are therefore greatly magnified in micro/nanoscale structures and should be of great potential in the design of novel functional devices. The purpose of this overview is to present a summary of our recently progress in the energy band engineering of elastically bent ZnO micro/nanowires. First, we present the electronic and mechanical coupling effect in bent ZnO nanowires. Second, we summary the bending strain gradient effect on the near-band-edge (NBE) emission photon energy of bent ZnO micro/nanowires. Third, we show that the strain can induce exciton fine-structure splitting and shift in ZnO microwires. Our recent progresses illustrate that the electronic band structure of ZnO micro/nanowires can be dramatically tuned by elastic strain engineering, and point to potential future applications based on the elastic strain engineering of ZnO micro/nanowires.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below.

References

Feng, J., Qian, X., Huang, C.W., and Li, J., Nat. Photon. 6, 866 (2012).10.1038/nphoton.2012.285CrossRef
Zhu, T. and Li, J., Prog. Mater. Sci. 55, 710 (2010).10.1016/j.pmatsci.2010.04.001CrossRef
Lee, C., Wei, X., Kysar, J. W., and Hone, J., Science 321, 385 (2008).10.1126/science.1157996CrossRef
Liu, F., Ming, P., and Li, J., Phys. Rev. B 76, 064120 (2007).10.1103/PhysRevB.76.064120CrossRef
Bertolazzi, S., Brivio, J., and Kis, A., ACS Nano 5, 9703 (2011).10.1021/nn203879fCrossRef
Wong, E. W., Sheehan, P. E., and Lieber, C. M., Science 277, 1971 (1997).10.1126/science.277.5334.1971CrossRef
Wang, L., Zheng, K., Zhang, Z., and Han, X., Nano Lett. 11, 2382 (2011).10.1021/nl200735pCrossRef
Wei, B., Zheng, K., Ji, Y., Zhang, Y. F., Zhang, Z., and Han, X., Nano Lett. 12, 4595 (2012).10.1021/nl301897qCrossRef
Levy, N., Burke, S., Meaker, K., Panlasigui, M., Zettl, A., Guinea, F., Neto, A. C., and Crommie, M., Science 329, 544 (2010).10.1126/science.1191700CrossRef
He, R. and Yang, P., Nat. Nanotech. 1, 42 (2006).10.1038/nnano.2006.53CrossRef
Han, X., Jing, G., Zhang, X., Ma, R., Song, X., Xu, J., Liao, Z., Wang, N., and Yu, D., Nano Res. 2, 553 (2009).10.1007/s12274-009-9053-4CrossRef
Liu, Z., Wu, J., Duan, W., Lagally, M. G., and Liu, F., Phys. Rev. Lett. 105, 016802 (2010).10.1103/PhysRevLett.105.016802CrossRef
Cao, J., Ertekin, E., Srinivasan, V., Fan, W., Huang, S., Zheng, H., Yim, J. W. L., Khanal, D. R., Ogletree, D. F., and , J. C, Grossman, , Nat. Nanotech. 4, 732 (2009).10.1038/nnano.2009.266CrossRef
Fu, X.W., Liao, Z.M., Liu, R., Xu, J., and Yu, D., ACS Nano 7, 8891 (2013).10.1021/nn403378gCrossRef
Dietrich, C., Lange, M., Klüpfel, F., von Wenckstern, H., Schmidt-Grund, R., and Grundmann, M., Appl. Phys. Lett. 98, 031105 (2011).10.1063/1.3544939CrossRef
Xue, H. Z., Pan, N., Li, M., Wu, Y. K., Wang, X. P., and Hou, J. G., Nanotech. 21 (2010).
Xu, S., Guo, W., Du, S., Loy, M., and Wang, N., Nano Lett. 12, 5802 (2012).10.1021/nl303132cCrossRef
Fu, X.W., Fu, Q., Kou, L. Z., Zhu, X. L., Zhu, R., Xu, J., Liao, Z. M., Zhao, Q., Guo, W. L., and Yu, D. P., Frontiers of Physics 8, 509 (2013).10.1007/s11467-013-0386-9CrossRef
Fu, Q., Zhang, Z. Y., Kou, L., Wu, P., Han, X., Zhu, X., Gao, J., Xu, J., Zhao, Q., Guo, W., and Yu, D. P., Nano Res. 4, 308 (2011).10.1007/s12274-010-0085-6CrossRef
Signorello, G., Karg, S., Björk, M. T., Gotsmann, B., and Riel, H., Nano Lett. 13, 917 (2013).10.1021/nl303694cCrossRef
Ieong, M., Doris, B., Kedzierski, J., Rim, K., and Yang, M., Science 306, 2057 (2004).10.1126/science.1100731CrossRef
Wang, Z. and Song, J., Science 312, 242 (2006).10.1126/science.1124005CrossRefPubMed
Qin, Y., Wang, X., and Wang, Z. L., Nature 451, 809 (2008).10.1038/nature06601CrossRef
Wang, Z. L., Adv Mater 24, 4632 (2012).10.1002/adma.201104365CrossRef
Zhu, G. A., Yang, R. S., Wang, S. H., and Wang, Z. L., Nano Lett. 10, 3151 (2010).10.1021/nl101973hCrossRef
Xu, S., Hansen, B. J., and Wang, Z. L., Nat. commun. 1, 93 (2010).10.1038/ncomms1098CrossRef
Wang, W., Zhao, Q., Li, H., Wu, H., Zou, D., and Yu, D., Adv. Funct. Mater. 22, 2775 (2012).10.1002/adfm.201200168CrossRef
Fu, X. W., Liao, Z. M., Xu, J., Wu, X. S., Guo, W., and Yu, D. P., Nanoscale 5, 916 (2013).10.1039/c2nr33281gCrossRefPubMed
Li, H., Zhao, Q., Wang, W., Dong, H., Xu, D., Zou, G., Duan, H., and Yu, D., Nano Lett. 13, 1271 (2013).10.1021/nl4000079CrossRef
Han, X., Kou, L., Lang, X., Xia, J., Wang, N., Qin, R., Lu, J., Xu, J., Liao, Z., Zhang, X., Guo, W. L., and Yu, D., Adv. Mater. 21, 4937 (2009).10.1002/adma.200900956CrossRef
Corsetti, F., Fernández-Serra, M., Soler, J. M., and Artacho, E., J. Phys. Condensed Mater. 25, 435504 (2013).10.1088/0953-8984/25/43/435504CrossRef
Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).10.1103/PhysRevLett.77.3865CrossRef
Xia, J. B., J. Lumin. 70, 120 (1996).10.1016/0022-2313(96)00049-XCrossRef
Han, X., Kou, L., Zhang, Z., Zhang, Z., Zhu, X., Xu, J., Liao, Z., Guo, W., and Yu, D., Adv. Mater. 24, 4707 (2012).10.1002/adma.201104372CrossRef
Liao, Z., Wu, H., Fu, Q., Fu, X., Zhu, X., Xu, J., Shvets, I., Zhang, Z., Guo, W., Leprince-Wang, Y., and Yu, D., Scientific Reports 2 (2012).10.1038/srep00452CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 11 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 20th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-2crfx Total loading time: 1.554 Render date: 2021-01-20T02:03:29.336Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Electronic and Mechanical Coupling in Elastically Bent ZnO Micro/Nanowires
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Electronic and Mechanical Coupling in Elastically Bent ZnO Micro/Nanowires
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Electronic and Mechanical Coupling in Elastically Bent ZnO Micro/Nanowires
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *