Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-dxfhg Total loading time: 0.388 Render date: 2021-02-26T07:15:00.051Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Electron Spin Resonance (ESR) Observation of Radicals on Biological Organism Interacted with Plasmas

Published online by Cambridge University Press:  18 May 2012

Kenji Ishikawa
Affiliation:
Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Hiroko Moriyama
Affiliation:
Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Kazuhiro Tamiya
Affiliation:
Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
Hiroshi Hashizume
Affiliation:
Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
Takayuki Ohta
Affiliation:
Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
Masafumi Ito
Affiliation:
Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
Sachiko Iseki
Affiliation:
Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Hiromasa Tanaka
Affiliation:
Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Keigo Takeda
Affiliation:
Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Hiroki Kondo
Affiliation:
Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Makoto Sekine
Affiliation:
Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Masaru Hori
Affiliation:
Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Get access

Abstract

We report the kinetic analysis of radicals on fungal spores of Penicillium digitatum interacted with charged-neutral oxygen species (O*) generated plasma discharge using real time in situ electron spin resonance (ESR) measurements. The ESR signal from the spores was observed at a g-value of around 2.004 with a line width of approximately 5G. We have successfully obtained information regarding the reaction mechanism with free radicals and realtime in situ ESR has proven to be a useful method to elucidate plasma-induced surface reactions on biological specimens

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Fridman, A., Plasma chemisty, (Cambridge University Press, New York. 2008).10.1017/CBO9780511546075CrossRefGoogle Scholar
2. Dobrynin, D., Fridman, G., Friedman, G., and Fridman, A., New J. Phys. 11, 115020 (2009).CrossRefGoogle Scholar
3. Gaunt, L. F., Beggs, C. B., Georghiou, G. E., IEEE Trans. Plasma Sci. 34, 1257 (2006).10.1109/TPS.2006.878381CrossRefGoogle Scholar
4. Kim, S.-M., and Kim, J.-I.. J. Microbiology 44, 466 (2006).Google Scholar
5. Ikawa, S., Kitano, K., and Hamaguchi, S., Plasma Process Polym. 7, 33 (2010).CrossRefGoogle Scholar
6. Kong, M. G., Kroesen, G., Morfill, G., Nosenko, T., Shimizu, T., van Dijk, J., and Zimmermann, J. L., New J. Phys. 11, 115012 (2009).CrossRefGoogle Scholar
7. Nagatsu, M., Terashita, F., Nonaka, H., Xu, L., Nagata, T., and Koide, Y., Appl. Phys. Lett. 86, 211502 (2005).CrossRefGoogle Scholar
8. Iseki, S., Ohta, T., Aomatsu, A., Ito, M., Kano, H., Higashijima, Y., and Hori, M., Appl. Phys. Lett. 96, 153704 (2010).10.1063/1.3399265CrossRefGoogle Scholar
9. Yamasaki, S., Umeda, T., Isoya, J., and Tanaka, K., Appl. Phys. Lett. 70, 1137 (1997).CrossRefGoogle Scholar
10. Ishikawa, K., Kobayashi, S., Okigawa, M., Sekine, M., Yamasaki, S., Yasuda, T., and Isoya, J., Appl. Phys. Lett. 86, 264104 (2005).CrossRefGoogle Scholar
11. Ishikawa, K., Sumi, N., Kono, A., Horibe, H., Takeda, K., Kondo, H., Sekine, M., and Hori, M., J. Phys. Chem. Lett. 2, 1278 (2011).CrossRefGoogle Scholar
12. Uchida, S., Takashima, S., Hori, M., Fukasawa, M., Ohshima, K., Nagahata, K., and Tatsumi, T., J. Appl. Phys. 103, 073303 (2008).CrossRefGoogle Scholar
13. Yamamoto, H., Takeda, K., Ishikawa, K., Ito, M., Sekine, M., Hori, M., Kaminatsui, T., Hayashi, H., Sakai, I., and Ohiwa, T., J. Appl. Phys. 109, 084112 (2011).CrossRefGoogle Scholar
14. Westenberg, A. A., Science 164, 381 (1968).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 13 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Electron Spin Resonance (ESR) Observation of Radicals on Biological Organism Interacted with Plasmas
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Electron Spin Resonance (ESR) Observation of Radicals on Biological Organism Interacted with Plasmas
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Electron Spin Resonance (ESR) Observation of Radicals on Biological Organism Interacted with Plasmas
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *