Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-6pznq Total loading time: 0.284 Render date: 2021-03-05T20:59:57.474Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Electron Localization, Tunneling and Energy Spectrum for Systems of Double Quantum Dots

Published online by Cambridge University Press:  08 August 2013

Igor Filikhin
Affiliation:
Department of Physics, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
Sergei Matinyan
Affiliation:
Department of Physics, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
Branislav Vlahovic
Affiliation:
Department of Physics, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
Get access

Abstract

Semiconductor heterostructures as quantum dots demonstrate discrete atom-like energy level structure based on several hundred of electron confinement states. In the case of double QD (DQD) or double QR (DQR), there is a single electron spectrum composed of a set of quasi-doublets. We study these specific spectrum properties with their relation to the electron tunneling in DQD (DCQR) when the wave function of electron localized initially in one of the double quantum object is spread into whole system. The double InAs/GaAs quantum dots are considered within the effective approach. Tunneling in DQD is studied in connection with change of inter-dot distance and QD geometry. There are two types of such tunneling in DQD. The first is related to tunneling in the system of two identical QDs; the second one occurs in the system of non-identical QDs. The tunneling in the DQR is a tunneling in the system with non-identical quantum objects. The quasi-doublets of the DQD spectrum play an important role in the tunneling. We study effect of violation of symmetry of DQD geometry on the tunneling and show that the violation of symmetry makes difficulties for such tunneling.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below.

References

Ponomarenko, L.A., Scheidin, F., Katsnelson, M.I., Yang, R., Hill, E.W., Novoselov, K.S., Geim, A.K., Science 320, 350 (2008).CrossRef
Baranger, H.U. and Stone, A.D., Phys. Rev. Lett. 63, 414 (1989).
Beenakker, C.W.J. and van Hoiten, H., Phys. Rev. Lett. 63, 1857 (1989).CrossRef
Whitney, R.S., Schomerus, H., Kopp, M., Phys. Rev. E 80, 056209 (2009); R.S. Whitney, P. Marconcini, M. Macucci, Phys. Rev. Lett. 102, 186802(2009).CrossRef
Filikhin, I., Matinyan, S., Schmid, B.K. and Vlahovic, B., Physica E 42, 1979 (2010).CrossRef
Filikhin, I., Matinyan, S. and Vlahovic, B., Phys. Lett. A 375, 620 (2011).CrossRef
Filikhin, I., Matinyan, S. G., and Vlahovic, B., Quantum Mechanics of Semiconductor Quantum Dots and Rings, published as a chapter in Fingerprints in the Optical and Transport Properties of Quantum Dots, ed. Al-Ahmadi, Ameenah, (InTech, 2012) pp. 468.Google Scholar
Filikhin, I., Suslov, V. M. and Vlahovic, B., Phys. Rev. B 73, 205332 (2006); I. Filikhin, V. M. Suslov, M. Wu and B. Vlahovic, Physica E 41, 1358(2009).CrossRef
Lorke, A., Luyken, R. J., Govorov, A. O., and Kotthaus, J. P., Phys. Rev. Lett. 84, 2223 (2000)CrossRef
Filikhin, I., Matinyan, S. G., and Vlahovic, B., Quantum Computers and Computing, 11, 35 (2011); I. Filikhin, S. Matinyan, J. Nimmo, B. Vlahovic, Physica E 43, 1669(2011).

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Electron Localization, Tunneling and Energy Spectrum for Systems of Double Quantum Dots
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Electron Localization, Tunneling and Energy Spectrum for Systems of Double Quantum Dots
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Electron Localization, Tunneling and Energy Spectrum for Systems of Double Quantum Dots
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *