Skip to main content Accessibility help
×
Home

Electron and Hole Relaxation Pathways in II-VI Semiconductor Nanocrystals

Published online by Cambridge University Press:  09 August 2011

V. I. Klimov
Affiliation:
Chemical Sciences and Technology Division, CST-6, MS-J585, Los Alamos National Laboratory, Los Alamos, NM 87545, klimov@lanl.gov
Ch. Schwarz
Affiliation:
Chemical Sciences and Technology Division, CST-6, MS-J585, Los Alamos National Laboratory, Los Alamos, NM 87545, klimov@lanl.gov
X. Yang
Affiliation:
Chemical Sciences and Technology Division, CST-6, MS-J585, Los Alamos National Laboratory, Los Alamos, NM 87545, klimov@lanl.gov
D. W. McBranch
Affiliation:
Chemical Sciences and Technology Division, CST-6, MS-J585, Los Alamos National Laboratory, Los Alamos, NM 87545, klimov@lanl.gov
C. A. Leatherdale
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
M. G. Bawendi
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
Corresponding
E-mail address:
Get access

Abstract

Femtosecond (fs) broad-band transient absorption (TA) is used to study the intra-band relaxation and depopulation dynamics of electron and hole quantized states in CdSe nanocrystals (NC's) with a range of surface properties. Instead of the drastic reduction in the energy relaxation rate expected due to a 'phonon bottleneck', we observe a fast sub-picosecond 1P-to-1S relaxation, with the rate enhanced in NC's of smaller radius. We use fs IR TA to probe electron and hole intraband transitions, which allows us to distinguish between electron and hole pathways leading to the depopulation of NC quantized states. In contrast to electron relaxation, which is controlled by NC surface passivation, depopulation of hole quantized states is extremely fast (sub-ps-to-ps time scales) in all types samples, independent of NC surface treatment (including NC's overcoated with a ZnS layer). Our results indicate that ultrafast hole dynamics are not due to trapping at surface defects, but rather arise from relaxation into intrinsic NC states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Efros, Al. L. and Efros, A., Sov. Phys. Sem. 16, 772 (1982).Google Scholar
2. Brus, L., Appl. Phys. A 53, 465 (1991).CrossRefGoogle Scholar
3. Ekimov, A. I. etal.,J. Opt. Soc. Am. B 10, 100 (1993).CrossRefGoogle Scholar
4. Norris, D. and Bawendi, M., Phys. Rev. B 53, 16338 (1996).CrossRefGoogle Scholar
5. Bawendi, M.et al., Phys. Rev. Lett. 65, 1623 (1990).Google Scholar
6. Woggon, U. etal., Phys. Rev. B 54, 17681 (1996).CrossRefGoogle Scholar
7. Klimov, V. and McBranch, D., Phys. Rev. Lett. 80, 4028 (1998).CrossRefGoogle Scholar
8. Guyot-Sionnest, P. and Hines, M., Appl. Phys. Lett. 72, 686 (1998).CrossRefGoogle Scholar
9. Bockelman, U. and Bastard, G., Phys. Rev. B 42, 8947 (1990).CrossRefGoogle Scholar
10. Benisty, H. et al., Phys. Rev. B 44, 10945 (1991).CrossRefGoogle Scholar
11. Inoshita, T. and Sakaki, H., Phys. Rev. B 44 7260 (1992).CrossRefGoogle Scholar
12. Efros, Al. L., Phys. Rev. B 44, 7448 (1992).CrossRefGoogle Scholar
13. Klimov, V., Bolivar, P. H., and Kurz, H., Phys. Rev. B 51, 1463 (1996)CrossRefGoogle Scholar
14. Rougemont, F. de et al., Appl. Phys. Lett. 5Q, 1619 (1987).CrossRefGoogle Scholar
15. Klimov, V. and McBranch, D., Opt. Lett. 21, 277 (1998).CrossRefGoogle Scholar
16. Murray, C., Norris, D., and Bawendi, M., J. Am. Chem. Soc. 115, 8706 (1993).CrossRefGoogle Scholar
17. Hines, M. A. and Guyot-Sionnest, P., J. Phys. Chem. 100, 468 (1996).CrossRefGoogle Scholar
18. Klimov, V., Hunsche, S., and Kurz, H., Phys. Status Solidi B 188, 259 (1995).CrossRefGoogle Scholar
19. Hunsche, S.et al., Appl. Phys. B 62, 3 (1996).CrossRefGoogle Scholar
20. Kang, K. I. etal., Phys. Rev. B 41, 15449 (1993).CrossRefGoogle Scholar
21. Klimov, V., Hunsche, S., and Kurz, H., Phys. Rev. B 50, 8110 (1994).CrossRefGoogle Scholar
22. Norris, D. J. et al., Phys. Rev. Lett. 72, 2612 (1994).CrossRefGoogle Scholar
23. Sercel, P. C., Phys. Rev. B 51, 14532 (1995).CrossRefGoogle Scholar
24. Bockelman, U. and Egler, T., Phys. Rev. B 44, 15574 (1992).CrossRefGoogle Scholar
25. Efros, Al. L., Kharchenko, V. A., and Rosen, M., Solid State Commun. 91, 281 (1995).CrossRefGoogle Scholar
26. Chestnoy, N., Harris, T., Hull, R., and Brus, L., J. Phys. Chem. 90, 3393 (1986).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 7 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 15th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-wd6lz Total loading time: 0.678 Render date: 2021-01-15T15:51:55.503Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Fri Jan 15 2021 15:50:29 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Electron and Hole Relaxation Pathways in II-VI Semiconductor Nanocrystals
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Electron and Hole Relaxation Pathways in II-VI Semiconductor Nanocrystals
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Electron and Hole Relaxation Pathways in II-VI Semiconductor Nanocrystals
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *