Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T15:43:51.933Z Has data issue: false hasContentIssue false

Effects of Processing Parameters on the Excimer Laser Deposition of Yba2Cu3O7-δ Thin Films

Published online by Cambridge University Press:  28 February 2011

R. E. Muenchausen
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
X. D. Wu
Affiliation:
J. Robert Oppenheimer Fellow
R. C. Dye
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
K. M. Hubbard
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
R. C. Estler
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
C. Flamme
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
R. Brainard
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
S. Foltyn
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
J. Tesmer
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
M. Maley
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
J. Martin
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
N. S. Nogar
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
Get access

Abstract

Systematic studies of the effects of pulsed laser deposition processing parameters on plume dynamics and resultant film properties have been performed. Plume angular distributions, cosm(θ), were observed to be variable between 1 > m > 15 depending on laser energy density and spot size. Under optimized conditions, epitaxial, superconducting thin films could be grown in‐situ on a variety of single‐crystal substrates. High quality, 2000 Å  ss thick films were obtained at deposition rates approaching 150 Å/sec.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Cheung, J. T., Sankur, H., “Growth of Thin Films by Laser‐Induced Evaporation” CRC Crit. Rev. Sol. St. Mater. Sci. 15, 63 (1988).Google Scholar
2 Estler, R. C., Foltyn, S., Garcia, A. R., Muenchausen, R. E., Nogar, N. S., Trkula, M. , “Laser Deposition of High‐Temperature Superconducting Thin Films”, Advanced Materials and Manufacturing Processes, in press.Google Scholar
3 Muenchausen, R. E., Hubbard, K. M., Foltyn, S., Jenkins, C., Estler, R. C., and Nogar, N. S., “Effect of Deposition Rate on Properties of YBa2Cu307‐5Superconducting Thin Films”, Appl. Phys. Lett., submitted.Google Scholar
4 Kelly, R. and Dreyfus, R. W.,“On the Effect of Knudsen‐Layer Formation on Studies of Vaporization, Sputtering and Desorption”, Surf. Sci. 198, 263 (1988); R. Kelly and R. W. Dreyfus, “Reconsidering the Mechanisms of Laser Sputtering with Knudsen‐Layer Formation Taken into Account”, Nucl. Inst. Meth. Phys. Res. B32., 341 (1988); R. Kelly, “Thermal Sputtering as a Gasdynamic Process”, Nucl. Inst. Meth. Phys. Res. B, in pressGoogle Scholar
5 Wu, X. D., Muenchausen, R. E., Foltyn, S., Estler, R. C., Dye, R. C., Flamme, C., Nogar, N. S., Garcia, A. R., Martin, J. A., Tesmer, J. R., “Effect of Deposition Rate on Properties of YBa2Cu3O7‐5 Superconducting Thin Films” Appl. Phys. Lett., submitted.Google Scholar