Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-9dmbd Total loading time: 0.273 Render date: 2021-02-26T08:10:04.094Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Effects of Atmospheric Pressure Dielectric Barrier Discharge Plasma Irradiation on Yeast Growth

Published online by Cambridge University Press:  21 May 2012

Satoshi Kitazaki
Affiliation:
Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
Kazunori Koga
Affiliation:
Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
Masaharu Shiratani
Affiliation:
Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
Nobuya Hayashi
Affiliation:
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan
Get access

Abstract

We investigated effects of atmospheric pressure dielectric barrier discharge (DBD) plasma irradiation on growth characteristics of bread yeast (Saccharomyces cerevisie). Nitric oxide of 400 ppm and O3 above 200 ppm are produce by the DBD plasmas. DBD plasma irradiation of 50 and 100 s enhances the growth of yeast in the lag phase, whereas 150 s irradiation suppresses the growth. There is an optimum duration of plasma irradiation for the growth promotion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Hayashi, N., Guan, W., Tsutsui, S., Tomari, T., and Hanada, Y., Jpn. J. Appl. Phys. 45, 8358 (2006).CrossRefGoogle Scholar
2. Hayashi, N. and Yagyu, Y., Trans. Mater. Res. Soc. Jpn. 33, 791 (2008).Google Scholar
3. Helmke, D. Hoffmeister, N. Mertens, S. Emmert, J. Schuette, , and Vioel, W.: New J. Phys. 11, 115025 (2009).10.1088/1367-2630/11/11/115025CrossRefGoogle Scholar
4. Pomp, R., Jamitzky, F., Shimizu, T., Steffes, B., Bunk, W., Schmidt, H. U., Georgi, M., Ramrath, K., Stolz, W., Stark, R. W., Urayama, T., Fujii, S., and Morfill, G. E.: New J. Phys. 11, 115020 (2009).Google Scholar
5. Lee, J., Shon, C. H., Kim, Y. S., Kim, S., Kim, G. C., and Kong, M. G., New J. Phys. 11, 115026 (2009).CrossRefGoogle Scholar
6. Bayliss, D. L., Walsh, J. L., Shama, G., Iza, F., and Kong, M. G., New J. Phys. 11, 115024 (2009).CrossRefGoogle Scholar
7. Dubinov, A. E., Lazarenko, E. R., and Selemir, V. D., IEEE Trans. Plasma Sci. 28, 180 (2000).10.1109/27.842898CrossRefGoogle Scholar
8. Kalghatgi, S. U., Fridman, A, Friedman, G, and Clyne, A.M, Proc. IEEE Eng. Med. Biol. Soc. 6030 (2009).Google Scholar
9. Kalghatgi, S., Kelly, C. M., Cerchar, E., Torabi, B., Alekseev, O., Fridman, A., Friedman, G., and Azizkhan-Clifford, J., PLoS ONE, 6(1), e16270 (2011).CrossRefGoogle Scholar
10. Vega-Mercado, H., Martin-Belloso, O., Qin, B. L., Chang, F. J., Marcela Góngora-Nieto, M., Barbosa-Canovas, G. V., and Swanson, B. G., Trends in food science & technology, 8(5), 151157. (1997).CrossRefGoogle Scholar
11. Sera, B., Spatenka, P., Sery, M., Vrchotova, N., and Hruskova, I., IEEE Trans. Plasma Sci. 38, 2963 (2010).10.1109/TPS.2010.2060728CrossRefGoogle Scholar
12. Sera, B., Stranak, V., Sery, M., Tichy, M., and Spatenka, P., Plasma Sci. Technol. 10, 506 (2008).CrossRefGoogle Scholar
13. Dobrynin, D., Fridman, G., Friedman, G., and Fridman, A., New J. Phys. 11, 115020 (2009).10.1088/1367-2630/11/11/115020CrossRefGoogle Scholar
14. Ebrahim, M. K. H., Acta Agron. Hungarica 52, 113 (2004).CrossRefGoogle Scholar
15. Volin, J. C., Denes, F. S., Young, R. A., and Park, S. M. T., Crop Sci. 40, 1706. (2000)CrossRefGoogle Scholar
16. Takaki, K. and Ihara, S.: Denki Gakkai Ronbunshi A 129, 439 (2009) [in Japanese].Google Scholar
17. Kitazaki, S., Yamashita, D., Matsuzaki, H., Uchida, G., Koga, K., and Shiratani, M., Proc. IEEE TENCON. p.1960 (2010).Google Scholar
18. Akiyoshi, Y., Nakahigashi, A., Hayashi, N., Kitazaki, S., Iwao, T., Koga, K., and Shiratani, M., Proc. IEEE TENCON, p.1957 (2010).Google Scholar
19. Hayashi, N., Nakahigashi, A., Goto, M., Kitazaki, S., Koga, K., and Shiratani, M., Jpn. J. Appl. Phys. 50, 08JF04 (2011).10.7567/JJAP.50.08JF04CrossRefGoogle Scholar
20. Kitazaki, S., Koga, K., Shiratani, M., and Hayashi, N., Jpn. J. Appl. Phys. 51, 01AE01 (2012).10.7567/JJAP.51.01AE01CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 12 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effects of Atmospheric Pressure Dielectric Barrier Discharge Plasma Irradiation on Yeast Growth
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effects of Atmospheric Pressure Dielectric Barrier Discharge Plasma Irradiation on Yeast Growth
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effects of Atmospheric Pressure Dielectric Barrier Discharge Plasma Irradiation on Yeast Growth
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *