Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-17T10:26:53.589Z Has data issue: false hasContentIssue false

Effect of W addition on microstructure and mechanical properties of Ni base dual two-phase intermetallic alloys

Published online by Cambridge University Press:  12 February 2015

Daisuke Edatsugi
Affiliation:
Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531, Japan
Yasuyuki Kaneno
Affiliation:
Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531, Japan
Hiroshi Numakura
Affiliation:
Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531, Japan
Takayuki Takasugi
Affiliation:
Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531, Japan
Get access

Abstract

The effect of W addition on microstructure and mechanical properties of Ni3Al (L12) and Ni3V (D022) two-phase intermetallic alloys has been investigated. W was added to the base alloy composition, Ni75Al10V12Nb3 (at. %) in place of either Ni, Al or V. The W-added alloy ingots were heat-treated in vacuum at 1575 K for 5 h. The majority of W-added alloys showed a dual two-phase microstructures while the alloy in which 3 at. % W substituted for Ni exhibited the dual two-phase microstructure containing W solid solution dispersions. Vickers hardness was significantly enhanced by W addition, which is primarily due to solid-solution strengthening.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sudbrack, C. K., Ziebell, T. D., Noebe, R. D., Seidman, D. N., Acta Mater. 56 (2008) 448463.CrossRefGoogle Scholar
Rusing, J., Wanderka, N., Czubayoko, U., Naundorf, V., Mukherji, D., Rosler, J., Scripta Mater. 46 (2002) 235240.CrossRefGoogle Scholar
Yeh, A. C., Tin, S., Scripta Mater. 52 (2005) 519524.CrossRefGoogle Scholar
Wang, W. Z., Jin, T., Liu, J. L., Sun, X. F., Guan, H. R., Hu, Z. Q., Mater. Sci. Eng. A 479 (2008) 148156.CrossRefGoogle Scholar
Garimella, N., Ode, M., Ikeda, M., Murakami, H., Sohn, Y.H., Intermetallics 16 (2008) 10951103.CrossRefGoogle Scholar
Kindrachuk, V., Wanderka, N., Banhart, J., Mukherji, D., Dwl Grnobese, D., Rosler, J., Acta Mater. 56 (2008) 16091618.CrossRefGoogle Scholar
Pope, D. P., Ezz, S. S., Int. Mater. Rev. 29 (1984) 136167.CrossRefGoogle Scholar
Shibuya, S., Kaneno, Y., Yoshida, M., Takasugi, T., Acta Mater. 54 (2006) 861870.CrossRefGoogle Scholar
Shibuya, S., Kaneno, Y., Yoshida, M., Shishido, T., Takasugi, T., Intermetallics 15 (2007) 119127.CrossRefGoogle Scholar
Shibuya, S., Kaneno, Y., Tsuda, H., Takasugi, T., Intermetallics 15 (2007) 338348.CrossRefGoogle Scholar
Nunomura, Y., Kaneno, Y., Takasugi, T., Intermetallics 12 (2004) 389399.CrossRefGoogle Scholar
Nunomura, Y., Kaneno, Y., Tsuda, H., Takasugi, T., Acta Mater. 54 (2006) 851860.CrossRefGoogle Scholar
Kawahara, K., Moronaga, T., Kaneno, Y., Kakitsuji, A., Takasugi, T., Mater. Trans., 51 (2010) 13951403.CrossRefGoogle Scholar
Moronaga, T., Ishii, S., Kaneno, Y., Tsuda, H., Takasugi, T., Mater. Sci. Eng. A 539 (2012), 3037.CrossRefGoogle Scholar
Okamoto, H., J. Phase Equilib., 1991, Volume 12,(6), p 706.Google Scholar
Kawahara, K., Kaneno, Y., Kakitsuji, A., Takasugi, T., Intermetallics, 17 (2009) 938944.CrossRefGoogle Scholar