Skip to main content Accessibility help
×
Home

Effect of Size, Shape, Composition, and Support Film on Localized Surface Plasmon Resonance Frequency: A Single Particle Approach Applied to Silver Bipyramids and Gold and Silver Nanocubes

Published online by Cambridge University Press:  31 January 2011


Emilie Ringe
Affiliation:
Emilieringe@u.northwestern.edu, Northwestern University, Chemistry, Evanston, Illinois, United States
Jian Zhang
Affiliation:
jian-zhang@northwestern.edu, Northwestern University, Chemistry, Evanston, Illinois, United States
Mark R. Langille
Affiliation:
mark.langille@gmail.com, Northwestern University, Chemistry, Evanston, Illinois, United States
Kwonnam Sohn
Affiliation:
KwonSohn2012@u.northwestern.edu, Northwestern University, Materials Science and Engineering, Evanston, Illinois, United States
Claire Cobley
Affiliation:
claire.cobley@gmail.com, Washington University, Biomedical Engineering, St. Louis, Missouri, United States
Leslie Au
Affiliation:
leslieau@gmail.com, Washington University, Biomedical Engineering, St. Louis, Missouri, United States
Younan Xia
Affiliation:
xia@biomed.wustl.edu, Washington University, Biomedical Engineering, St. Louis, Missouri, United States
Chad A. Mirkin
Affiliation:
chadnano@northwestern.edu, Northwestern University, Chemistry, Evanston, Illinois, United States
Jiaxing Huang
Affiliation:
jiaxing-huang@northwestern.edu, Northwestern University, Materials Science and Engineering, Evanston, Illinois, United States
Laurence D Marks
Affiliation:
L-marks@northwestern.edu, Northwestern University, Materials Science and Engineering, Evanston, Illinois, United States
Richard P Van Duyne
Affiliation:
vanduyne@northwestern.edu, United States

Abstract

Localized surface plasmon resonances (LSPR), collective electron oscillations in nanoparticles, are being heavily scrutinized for applications in chemical and biological sensing, as well as in prototype nanophotonic devices. This phenomenon exhibits an acute dependence on the particle’s size, shape, composition, and environment. The detailed characterization of the structure-function relationship of nanoparticles is obscured by ensemble averaging. Consequently, single-particle data must be obtained to extract useful information from polydisperse reaction mixtures. Recently, a correlated high resolution transmission electron microscopy (HRTEM) LSPR technique has been developed and applied to silver nanocubes. We report here a second generation of experiments using this correlation technique, in which statistical analysis is performed on a large number of single particles. The LSPR dependence on size, shape, material, and environment was probed using silver right bipyramids, silver cubes, and gold cubes. It was found that the slope of the dependence of LSPR peak on size for silver bipyramids increases as the edges become sharper. Also, a plasmon shift of 96 nm was observed between similar silver and gold cubes, while a shift of 26 nm was observed, for gold cubes, between substrates of refractive index (RI) of 1.5 and 2.05.


Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Haes, A. J., Chang, L., Klein, W. L., and Duyne, R. P. Van, J. Am. chem. Soc. 127, 22642271 (2005).CrossRefGoogle Scholar
[2] Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L., and Mirkin, C. A., Science 277, 10781081 (1997).CrossRefGoogle Scholar
[3] Atwater, H. A., Sci. Am. 296, 5663 (2007).CrossRefGoogle Scholar
[4] Dionne, J. A., Sweatlock, L. A., Atwater, H. A., and Polman, A., Phys. rev. B 73, 035407 (2006).CrossRefGoogle Scholar
[5] Ozbay, E., >Science, 311, 189193, (2006).Science,+311,+189–193,+(2006).>Google Scholar
[6] Ebbesen, T. W., Genet, C., and Bozhevolnyi, S. I., Phys. Today 61, 4450 (2008).CrossRefGoogle Scholar
[7] Zia, R., Schuller, J. A., Chandran, A., and Brongersma, M. L., Mater. Today 9, 2027 (2006).CrossRefGoogle Scholar
[8] Stiles, P. L., Dieringer, J. A., Shah, N. C., and Duyne, R. P. Van, Ann. Rev. Anal. Chem. 1, 601626 (2008).CrossRefGoogle Scholar
[9] Rodriguez-Fernandez, J., Novo, C., Myroshnychenko, V., Funston, A. M., Sanchez-Iglesias, A., Pastoriza-Santos, I., Perez-Juste, J., Abajo, F. J. Garcia de, Liz-Marzan, L. M., and Mulvaney, P., J. Phys. Chem. C 113, 1862318631 (2009).CrossRefGoogle Scholar
[10] McMahon, J. M., Wang, Y., Sherry, L. J., Duyne, R. P. Van, Marks, L. D., Gray, S. K., and Schatz, G. C., J. Phys. Chem. C 113, 27312735 (2009).CrossRefGoogle Scholar
[11] Wang, Y., Eswaramoorthy, S. K., Sherry, L. J., Dieringer, J. A., Cadmen, J. P., Schatz, G. C., Duyne, R. P. Van, and Marks, L. D., Ultramicroscopy 109, 11101113 (2009).CrossRefGoogle Scholar
[12] Zhang, J., Li, S., Wu, J., George Schatz, C., and Mirkin, Chad A., Angew. Chem. 121, 79277931 (2009).CrossRefGoogle Scholar
[13] Sun, Y. and Xia, Y., Science 298, 21762179 (2002).CrossRefGoogle Scholar
[14] Sohn, K., Kim, F., Pradel, K. C., Wu, J., Peng, Y., Zhou, F., and Huang, J., ACS Nano 3, 21912198 (2009).CrossRefGoogle Scholar
[15] Malinsky, M. D., Kelly, L., Schatz, G. C., and Duyne, R. P. Van, J. Phys. Chem. B 105, 23432350 (2001).CrossRefGoogle Scholar
[16] Shukla, R. P., Chowdhury, A., and Gupta, P. D., Opt. Eng. 33, 18811884 (1994).Google Scholar
[17] Sherry, L. J., Chang, S.-H., Schatz, G. C., Duyne, R. P. Van, Wiley, B. J., and Xia, Y., Nano Letters 5, 20342038 (2005).CrossRefGoogle Scholar
[18] Schatz, G. C. (private communication).Google Scholar
[19] Zhou, F., Li, Z.-Y., Liu, Y., and Xia, Y., J. Phys. Chem. C 112, 2023320240 (2008).CrossRefGoogle Scholar
[20] Wiley, B. J., Xiong, Y., Li, Z.-Y., Yin, Y., and Xia, Y., Nano Letters 6, 765768 (2006).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 32 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-xrv4g Total loading time: 0.284 Render date: 2020-12-05T06:45:02.868Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Dec 05 2020 06:00:23 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of Size, Shape, Composition, and Support Film on Localized Surface Plasmon Resonance Frequency: A Single Particle Approach Applied to Silver Bipyramids and Gold and Silver Nanocubes
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effect of Size, Shape, Composition, and Support Film on Localized Surface Plasmon Resonance Frequency: A Single Particle Approach Applied to Silver Bipyramids and Gold and Silver Nanocubes
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effect of Size, Shape, Composition, and Support Film on Localized Surface Plasmon Resonance Frequency: A Single Particle Approach Applied to Silver Bipyramids and Gold and Silver Nanocubes
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *