Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T14:03:10.829Z Has data issue: false hasContentIssue false

The Effect of Pb on the Interface Structure of Fe/Cr(100) Metallic Multilayers

Published online by Cambridge University Press:  17 March 2011

Kyu-Young Kim
Affiliation:
Institute of Industrial Science, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106-8558, Japan
Masao Kamiko
Affiliation:
Institute of Industrial Science, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106-8558, Japan
Sang-Mun Oh
Affiliation:
Institute of Industrial Science, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106-8558, Japan
Guang-Hong Lu
Affiliation:
Institute of Industrial Science, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106-8558, Japan
Ryoichi Yamamoto
Affiliation:
Institute of Industrial Science, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106-8558, Japan
Get access

Abstract

We investigated the differences in the interface structures and magnetotransport properties between surfactant-mediated multilayers and normal ones. From the observations of RHEED and High-Resolution X-ray diffraction patterns, we confirmed that the surfaces of Fe/Cr(100) multilayers with Pb are flatter and the interfaces are sharper than one without Pb, which means that Pb operates as an effective surfactant. The magnetoresistance(MR) ratio of the multilayers prepared with Pb was larger than that of the multilayers prepared without Pb. The change of resistance with magnetic field was larger for the multilayers with a surfactant.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Petroff, F., Barthélémy, A., Hamziü, A., Fert, A., Etienne, P., Lequien, S. and Creuzet, G., J.Magn.Magn.Mater. 93, 95 (1991).Google Scholar
2. Rensing, N.M., Mater.Res.Soc.Symp.Proc. 313, 197 (1993).Google Scholar
3. Copel, M., Reuter, M. C., Kaxiras, E. and Tromp, R. M., Phys. Rev. Lett. 63, 632 (1989).Google Scholar
4. Poelsema, B., Kunkel, R., Nagel, N., Becker, A. F., Rosenfeld, G. and Comsa, G., Appl. Phys. A53, 369 (1991).Google Scholar
5. Vegt, H. A. van der, Pinxteren, H. M. van, Lohmeier, M., Vlieg, E. and Thornton, J. M. C., Phys. Rev. Lett, 68, 3335 (1992).Google Scholar
6. Egelhoff, W. F. Jr, Chen, P. J., Powell, C. J., Stiles, M. D. and McMichael, R. D., J. Appl. Phys. 80, 5183 (1996).Google Scholar
7. Camarero, J., Graf, T., Miguel, J. J. de, Miranda, R., Kuch, W., Zharnikov, M., Dittschar, A., Schneider, C. M. and Kirschner, J., Phys. Rev. Lett. 76, 4428 (1996).Google Scholar
8. Heinrich, B. and Cochran, J. F., Adv. Phys. 42, 523 (1993).Google Scholar
9. Schatz, A., Dunkhorst, S., Lingnau, S., Hörsten, U. von and Keune, W., Surf. Sci. 310, L595 (1994).Google Scholar
10. Theis-Bröhl, K., Zoller, I., Bödeker, P., Schmitte, T., Zabel, H., Brendel, L., Belzer, M. and Wolf, D. E., Phys. Rev. B57, 4747 (1998).Google Scholar
11. Itoh, H., Inoue, J. and Maekawa, S., Phys. Rev. B47, 5809 (1993).Google Scholar
12. Inoue, J., Itoh, H. and Maekawa, S., J. Magn. Magn. Mater. 121, 344 (1993).Google Scholar
13. Coehoorn, R., J.Magn.Magn.Mater. 151, 341 (1995).Google Scholar