Skip to main content Accessibility help
×
Home

Effect of Growth Conditions on Defect-related Photoluminescence in ZnO Thin Films Grown by Plasma Assisted MBE

Published online by Cambridge University Press:  01 February 2011

Vitaliy Avrutin
Affiliation:
vavrutin@vcu.edu, Virginia Commonwealth University, Electrical Engineering, 601 West Main St., Richmond, VA, 23284, United States, (804) 827 7000 ext. 357, (804) 828 4269
Mikhail A. Reshchikov
Affiliation:
mreshchi@vcu.edu, Virginia Commonwealth University, Physics, 1020 West Main St., Richmond, VA, 23284, United States
Natalia Izyumskaya
Affiliation:
nizioumskaia@vcu.edu, Virginia Commonwealth University, Electrical Engineering, 601 West Main St., Richmond, VA, 23284, United States
Ryoko Shimada
Affiliation:
rshimada@vcu.edu, Virginia Commonwealth University, Electrical Engineering, 601 West Main St., Richmond, VA, 23284, United States
Hadis Morkoç
Affiliation:
hmorkoc@vcu.edu, Virginia Commonwealth University, Electrical Engineering, 601 West Main St., Richmond, VA, 23284, United States
Get access

Abstract

The effect of growth conditions on the luminescence properties of ZnO films grown on a-Al2O3/GaN(0001)/c-Al2O3 templates by plasma-assisted molecular beam epitaxy has been investigated. We observed that the deflecting of the ions produced by the RF oxygen plasma away from substrate results in improved excitonic emission and modification of the defect-related PL spectrum. The intensity of the near-band-edge lines in photoluminescence spectra from the layers grown with the ion deflector deflection was found to increase as compared to the controls grown without the ion deflector. The yellow-green spectral range was dominated by different defect bands in the films grown with and without ion deflection. The effect of RF power on peak positions of the defect band was studied for the films grown without ion deflection.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Özgür, Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S.-J., and Morkoç, H., J. Appl. Phys. 98, 041301 (2005).CrossRefGoogle Scholar
2. Li, L.H., Pan, Z., Zhang, W., Lin, Y.W., Wang, X.Y., Wu, R.H., and Ge, W.K., J. Cryst. Growth 223, 140, (2001).CrossRefGoogle Scholar
3. Utsumi, A., Furukawa, Y., Yonezu, H., Yoshizumi, Y., Morita, Y., and Wakahara, A., Phys. Stat. Sol. A 202, 758 (2005).10.1002/pssa.200461529CrossRefGoogle Scholar
4. Kucheyev, S.O., Jagadish, C., Williams, J.S., Deenapanray, P.N.K., Yano, M., Koike, K., Sasa, S., Inoue, M., and Ogata, K., J. Appl. Phys. 93, 2972 (2003).10.1063/1.1542939CrossRefGoogle Scholar
5. Hong, S.K., Hanada, T., Ko, H.J., Chen, Y.F., Yap, T., Imai, D., Araki, K., Shinohara, M., Saitoh, K., and Terauchi, , Phys. Rev. B 65, 115331 (2002).CrossRefGoogle Scholar
6. Kato, H., Sano, M., Miyamoto, K., and Yao, , Jap. J. Appl. Phys. Pt. 1 42, 2241 (2003).CrossRefGoogle Scholar
7. Meyer, B.K., Alves, H., Hofmann, D.M., Kriegseis, W., Forster, D., Bertram, F., J. Christen, Hoffmann, A., Strassburg, M., Dworzak, M., Haboeck, U., Rodina, A.V., Phys. Stat. Sol. B 241, 231 (2004)10.1002/pssb.200301962CrossRefGoogle Scholar
8. Reshchikov, M. A., Xie, J., Hertog, B., and Osinsky, A., Submitted to J. Appl. Phys.Google Scholar
9. Reshchikov, M. A., Avrutin, V., Izyumskaya, N., Shimada, R., and Morkoç, H., Physica B 401–402, 374 (2007).10.1016/j.physb.2007.08.191CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 10 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-q2rfn Total loading time: 0.31 Render date: 2021-01-26T00:21:05.257Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of Growth Conditions on Defect-related Photoluminescence in ZnO Thin Films Grown by Plasma Assisted MBE
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effect of Growth Conditions on Defect-related Photoluminescence in ZnO Thin Films Grown by Plasma Assisted MBE
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effect of Growth Conditions on Defect-related Photoluminescence in ZnO Thin Films Grown by Plasma Assisted MBE
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *